Department of Mathematics

Part I. Answer ALL questions. Total 70 points.

1. [6 Points] Find the general solution to $y^{(4)}-4 y^{\prime \prime}+4 y=0$.
2. [10 Points] Solve $\left(e^{y^{2}}-5 y \sin (x y)+\frac{1}{\sqrt{x}}\right) d x+\left(2 x y e^{y^{2}}-5 x \sin (x y)-\frac{1}{\sqrt{y}}\right) d y=0$.
3. [5 Points] Suppose $u(x, t)$ satisfies the partial differential equation:

$$
t u_{x x}+2 x u_{x t}+x t u_{x}=0 .
$$

Use the separation of variables method to replace the partial differential equation by two ordinary differential equations.
4. (a) [5 Points] Using only the definition, find the Laplace Transform $Y(s)$ of $y(t)=e^{a t}$ where a is a constant. For what values of s does the Laplace Transform $Y(s)$ exist?
(b) [10 Points] Solve, using Laplace Transforms, the initial value problem:

$$
y^{\prime \prime}-4 y^{\prime}+4 y=3, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

(See table at end of exam.)
5. [6 Points] Find two linearly independent solutions of $2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0$ for $x>0$ and compute their Wronskian.
6. [10 Points] A spring has a spring constant of $8 \mathrm{lb} / \mathrm{ft}$. A $4-\mathrm{lb}$ weight is pulled down $\frac{1}{2} \mathrm{ft}$ below equilibrium and then given an initial upward velocity of 5 ft per sec. The damping constant γ is equal to $2 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$. Assume the acceleration due to gravity is $32 \mathrm{ft} / \mathrm{sec}^{2}$.
(a) Solve for $u(t)$, the displacement of the weight from equilibrium at time t.
(b) Find the distance of the weight from equilibrium at $t=1 \mathrm{sec}$.
7. [10 Points] Consider the general power series solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ near $x=0$ for

$$
\left(x^{2}-4\right) y^{\prime \prime}+3 x y^{\prime}+y=0 .
$$

Find the recurrence relation and compute the first four terms for the solution satisfying $y(0)=4, y^{\prime}(0)=3$.
8. [8 Points] Solve $x^{2} y^{\prime}-2 x y=4 x^{3}-9, \quad y(1)=5$.

Part II. Answer any THREE (3) COMPLETE questions, each 10 Points. Total: 30 points. Omit two question.

9. Use the method of variation of parameters to find the general solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\frac{e^{2 x}}{x}
$$

10. For the equation $3 x y^{\prime \prime}-y^{\prime}+5 y=0$, consider a series solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{r+n}$ valid for $x>0$. Find the indicial equation, the recurrence relation and the first three non-zero terms of the solution corresponding to the larger root of the indicial equation.
11. Consider the function $f(x)$ defined by:

$$
f(x)=\left\{\begin{array}{ll}
x, & \text { if } 0 \leq x<2, \\
-x, & \text { if }-2 \leq x<0 ;
\end{array} \quad f(x+4)=f(x) \text { for all } x .\right.
$$

(a) Find the Fourier series $F(x)$ for $f(x)$ (that is, give the entire series in summation form, not just the Fourier coefficients).
(b) Sketch the graph of the function to which the Fourier series converges for the interval [0, 8].
12. Solve: $y^{\prime \prime}+3 y^{\prime}-4 y=10 e^{t}+16 t, \quad y(0)=y^{\prime}(0)=0$.
13. (a) Find the general solution to $y^{(6)}+16 y^{\prime \prime}=0$.
(b) Given that the equation $L[y]=y^{(4)}-3 y^{(3)}+y^{\prime \prime}+5 y^{\prime}=0$ has the general solution

$$
y_{c}(t)=c_{1}+c_{2} e^{-t}+c_{3} e^{2 t} \cos (t)+c_{4} e^{2 t} \sin (t)
$$

write the form of $y_{p}(t)$ for the equation $L[y]=2 t e^{-t}+4 e^{2 t} \cos (t)$. You need not evaluate the coefficients of $y_{p}(t)$.

End of Exam Questions

Table of Laplace Tranforms

$f(t)$	1	t^{n}	$e^{a t}$	$\cos a t$	$\sin a t$
$\mathcal{L}\{f(t)\}$	$\frac{1}{s}$	$\frac{n!}{s^{n+1}}$	$\frac{1}{s-a}$	$\frac{s}{s^{2}+a^{2}}$	$\frac{a}{s^{2}+a^{2}}$

