Part 1: Answer ALL questions in this part. (70 points)

1) Evaluate the following limit (5 points):

$$
\lim _{x \rightarrow 0}\left(1+x^{2}\right)^{\frac{1}{x}}
$$

2) Compute the derivative $\frac{d y}{d x}$ and simplify for each of the following (15 points):
a) $y=x 2^{\sin x}$
b) $y=\ln \sqrt{x^{2}+x}$
c) $\tan \left(e^{2 x}\right)=\sinh y+y$
3) Evaluate each of the following integrals (30 points):
a) $\int \sin ^{-1}(3 x) d x$
b) $\int_{1}^{e} 9 x \ln x d x$
c) $\int \frac{2 x^{2}-4}{x^{3}-2 x^{2}} d x$
d) $\int \frac{x^{3}}{\sqrt{25-x^{2}}} d x$
e) $\int_{0}^{\frac{\pi}{4}} 4 \cos ^{2}(2 x) d x$
f) $\int \tan ^{3} x \sec ^{6} x d x$
4) The region R lies in the first quadrant of the $x y$ plane and is bounded by the curves $y=8 x$, and $y=2 x^{2}$. Set up two integrals for the volume of the solid that is obtained by rotating R about the line $x=-2$, one using the slab (disc) method and one using the shell method. Then use one of these to compute the volume (10 points).
5) a) Sketch the curves $r=2 \sin \theta$ and $r=1$; set up an integral but do not integrate the area inside the $r=2 \sin \theta$ and outside $r=1$ (5 points).
b) Use calculus to find the length of arc of the curve $r=2 \sin \theta$ between $\theta=0$ and $\theta=\frac{\pi}{3}$ (5 points).

Show all work for full credit. Calculators may NOT be used.

Part 2: Answer 3 of the 5 questions. (10 points each)

6) A leaky $10-\mathrm{kg}$ bucket is lifted from the ground to a height of 10 m at a constant speed with a rope of negligible weight (assume that the rope does not have any mass). Initially the bucket contains 100 kg of water, but the water leaks at a constant rate and finishes draining just as the bucket reaches the 10 m level. How much work is done?
7) a) Write out the partial fractions decomposition of $\frac{3 x^{2}+2 x-1}{x^{3}(x-1)\left(x^{2}+4\right)^{2}}$. Do not evaluate the coefficients.
b) Evaluate the integral or show that it is divergent:

$$
\int_{0}^{\infty} \frac{x-1}{x^{2}-2 x+20} d x
$$

8) a) A curve is given parametrically by $x=3 \sin ^{2}(\pi t)$ and $y=-5 \cos (\pi t)$. Compute the derivatives $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in terms of t
b) Use both trapezoidal and parabolic (Simpson's) rules to approximate $\int_{1}^{5} \frac{1}{x} d x$ using $n=4$.
9) A sample of some radioactive material (call it element \boldsymbol{X}) decayed to 31% of its original mass after 9 hours.
a) Find an expression for the mass of element \boldsymbol{X} after t hours?
b) Find the half-life of the element \boldsymbol{X} ?
c) Find the mass remaining after 15 hours if initial mass was 1000 grams?
10) a) Given the equation $x^{2}+8 \sqrt{3} x+2 \sqrt{3} x y+3 y^{2}-8 y=0$, find angle of rotation needed to eliminate the $x y$ term in the equation above.
b) Find the equation of the hyperbola with vertices, $(-1,6)$ and $(-5,6)$, and with asymptotes with slopes $\pm \frac{3}{2}$. Sketch the graph.
