Part 1: Answer ALL questions in this part. (70 points)

1) Compute the derivative $\frac{d y}{d x}$ and simplify for each of the following (15 points):
a) $y=e^{\csc 3 x}$
b) $y=(\ln x)^{x}$
c) $x-y=2 \sin (x+y)+e^{-x}$
2) Evaluate each of the following integrals (30 points):
a) $\int_{1}^{e} 9 x^{2} \ln x d x$
b) $\int \frac{x+2}{x^{4}-x^{2}} d x$
c) $\int \tan ^{5} x \sec ^{4} x d x$
d) $\int \frac{\sqrt{9-x^{2}}}{x} d x$
e) $\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x$
3) Evaluate each of the following limits (8 points):
a) $\lim _{x \rightarrow \infty} \frac{2 x+5 e^{x}}{x^{2}+e^{x}}$
b) $\lim _{x \rightarrow \frac{\pi^{-}}{2}}(\tan x)^{\cos x}$
4) The region R lies in the first quadrant of the $x y$ plane and is bounded by the curves $y=e^{x}$, $y=0, x=0$ and the line $x=\ln 5$. Find the volume of the solid that is obtained by rotating R about the x-axis (6 points).
5) Sketch the polar coordinates curve given by the equation $r=3+3 \sin \theta$ and find the area that it encloses (6 points).
6) Calculate the arc length of $y=2 x^{(3 / 2)}+5$ between $x=0$ and $x=\frac{1}{3}$ (5 points).

Show all work for full credit. Calculators may NOT be used.

Part 2: Answer 3 of the 5 questions. (10 points each)

7) A hemisphere shaped tank (4 feet diameter) with vertical outlet pipe (3 feet) is full of a mysterious liquid (see figure to the right). The mysterious liquid has a density of 100 pounds per cubic foot. Compute the work necessary to pump all mysterious liquid out through the outlet pipe.

8) a) Find $\int \frac{x^{4}+8 x^{2}+8}{x^{3}-4 x} d x$
b) Evaluate the integral or show that it is divergent:

$$
\int_{0}^{\infty} x^{2} e^{-x} d x
$$

9) A curve is given parametrically by $x=-2 \sin (\pi t)$ and $y=8 \cos (\pi t)$.
a) Compute the derivatives $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in terms of t
b) Find all values where the tangent line is vertical and horizontal.
c) Set up (do not evaluate) an integral that represents the length of the curve on the interval $1 \leq t \leq 2$.
10) A sample of some radioactive material (call it element \boldsymbol{X}) decayed to 27% of its original mass after 8 hours.
a) Find an expression for the mass of element \boldsymbol{X} after t hours?
b) Find the half-life of the element \boldsymbol{X} ?
c) Find the mass remaining after 16 hours if initial mass was 200 grams?
11) a) Given the equation $4 x^{2}+2 \sqrt{3} x y+2 y^{2}+10 \sqrt{3} x+10 y=5$, find angle of rotation needed to eliminate the $x y$ term in the equation above.
b) Find the equation of the hyperbola with vertices $(0, \pm 6)$ and with asymptotes with slopes $\pm \frac{3}{2}$. Sketch the graph.
