Series Tests (for convergence)

Test	When to Use	Conclusions	Section
Geometric Series	$\sum_{k=0}^{\infty} ar^k$	Converges to $\frac{a}{1-r}$ if $ r < 1$;	8.2
	k=0	diverges if $ r \ge 1$.	
kth-Term Test	All series	If $\lim_{k\to\infty} a_k \neq 0$, the series diverges.	8.2
Integral Test	$\sum_{k=1}^{\infty} a_k \text{ where } f(k) = a_k,$	$\sum_{k=1}^{\infty} a_k \text{ and } \int_1^{\infty} f(x) dx$	8.3
	f is continuous and decreasing and $f(x) \ge 0$	both converge or both diverge.	
p-series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	Converges for $p > 1$; diverges for $p \le 1$.	8.3
Comparison Test	$\sum_{k=1}^{\infty} a_k \text{ and } \sum_{k=1}^{\infty} b_k, \text{ where } 0 \le a_k \le b_k$	If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.	8.3
		If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.	
Limit Comparison Test	$\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, where	$\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$	8.3
	$a_k, b_k > 0$ and $\lim_{k \to \infty} \frac{a_k}{b_k} = L > 0$	both converge or both diverge.	
Alternating Series Test	$\sum_{k=1}^{\infty} (-1)^{k+1} a_k \text{ where } a_k > 0 \text{ for all } k$	If $\lim_{k \to \infty} a_k = 0$ and $a_{k+1} \le a_k$ for all k ,	8.4
		then the series converges. ∞	
Absolute Convergence	Series with some positive and some negative terms (including alternating series)	If $\sum_{k=1}^{\infty} a_k $ converges, then	8.4
		$\sum_{k=1}^{\infty} a_k \text{ converges absolutely.}$	
Ratio Test	Any series (especially those involving exponentials and/or factorials)	For $\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right = L$,	8.4
		if $L < 1$, $\sum_{k=1}^{\infty} a_k$ converges absolutely	
		if $L > 1$, $\sum_{k=0}^{\infty} a_k$ diverges,	
		if $L = 1$, no conclusion.	
Root Test	Any series (especially those involving exponentials)	For $\lim_{k\to\infty} \sqrt[k]{ a_k } = L$,	8.4
	exponentius)	if $L < 1$, $\sum_{k=1}^{\infty} a_k$ converges absolutely	
		if $L > 1$, $\sum_{k=1}^{\infty} a_k$ diverges,	
		if $L = 1$, no conclusion.	

There is also a method that works for "telescoping series". We will describe what "telescoping series" are, and how to determine their convergence in class.