Instructions: Use your own scrap paper. Write your answers in the space provided.

1. Write the general form for $\iiint f(x, y, z) d V$ in:
(a) Cylindrical coordinates: \qquad
(b) Spherical coordinates: \qquad
2. State the formula for the following, defining what the symbols/variables mean:
(a) a line (3 forms): formula 1: \qquad Meanings: \qquad formula 2: \qquad
formula 3: \qquad
(b) a plane: formula: \qquad Meanings: \qquad
(c) the tangent plane to the surface $F(x, y, z)=k$ at the point (a, b, c) :
formula: \qquad Meanings: \qquad
3. Compute:
(a) $\langle-1,2,0\rangle \times\langle 3,4,-2\rangle$ \qquad
(b) $\left\langle\pi,-3 \cos t, 4 t^{2}\right\rangle \cdot\left\langle 2, e^{t}, 2 t^{-2} \sin t^{2}\right\rangle$ \qquad
4. Set up a triple integral to compute the volume of the region bounded by $z=\sqrt{x^{2}+y^{2}}$ and $z=4$ in the first octant. Include a sketch in your answer.
5. Evaluate the integral set up in problem 4. \qquad
