MATH 392 QUIZ 1 - Version B

January 28, 2019

Name:	
Instructions: Use your own scrap paper. Write your answers in the space provided.	
1. Write the general form for $\int \int \int f(x, y, y) dx$	z) dV in:
(a) Cylindrical coordinates:	
(b) Spherical coordinates:	
2. State the formula for the following, defining (a) a line (3 forms): formula 1: formula 2:	Meanings:
formula 3:(b) a plane: formula:	Meanings:
(c) the tangent plane to the surface $F(x, y, z)$	= k at the point (a, b, c) :
formula:	Meanings:
3. Compute: (a) $\langle -1, 2, 0 \rangle \times \langle 3, 4, -2 \rangle$	
(b) $\langle \pi, -3\cos t, 4t^2 \rangle \cdot \langle 2, e^t, 2t^{-2}\sin t^2 \rangle$	
4. Set up a triple integral to compute the voland $z=4$ in the first octant. Include a sketch	blume of the region bounded by $z = \sqrt{x^2 + y^2}$ in your answer.

5. Evaluate the integral set up in problem 4.