Math 392 Quiz 8A

March 18, 2019

Name:	ANSWER	S

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Define the following:

fine the following:

(a)
$$\int_{C} f(x,y) ds = \frac{\int_{C} f(x(t), y(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2}}}{\int_{C} f(x(t)) \cdot f(x(t))} dt$$

(b)
$$\int_{C} \vec{F} \cdot d\vec{r} = \frac{\int_{C} f(x(t)) \cdot f(x(t))}{\int_{C} f(x(t)) \cdot f(x(t))} dt$$

(c)
$$\int_{C} f(x,y) dx = \frac{\int_{C} f(x(t), y(t)) \cdot f(x(t))}{\int_{C} f(x(t), y(t))} x'(t) dt$$

(where \vec{C} is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t) \rangle$. No shorthand, flesh out full definition.)

- 2. State the equation in the fundamental theorem for line integrals: $\int \nabla f \cdot d\vec{r} = f(\vec{r}(b)) f(\vec{r}(\omega))$
- 3. State the equation in Green's Theorem: $\sqrt{Pdx + Qdy} = \sqrt{Qx Py dA}$
- 4. What does it mean to say " \vec{F} is conservative"? $\vec{F} = \nabla f$ for some scalar function f.
- 5. What does it mean to say " \vec{G} is a vector potential of \vec{F} "? $\vec{F} = \text{curl } \vec{G}$
- 6. Let $\vec{F} = \langle P(x,y), Q(x,y) \rangle$ be defined on an open, simply connected domain D. Suppose P and Q have continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative?
- 7. Let $\vec{F} = \langle P(x,y), Q(x,y), R(x,y) \rangle$ be defined on an open, simply connected domain D. Suppose P, Q, and R have continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative?
- 8. Let $\vec{F} = \langle x^2 + yz, xz y^3, z^2 + xy \rangle$:
 - (a) Compute $curl\vec{F} = \langle 0, 0, 0 \rangle = \vec{0}$
 - (b) Compute $\int_C \vec{F} \cdot d\vec{r}$, where C is the negatively oriented curve in the yz-plane given by the line segment from (0,-1,1) to (0,1,1), followed by the line segment from (0,1,1) to the origin, followed by another line segment from the origin to (0,-1,1). $\int_C \vec{F} \cdot d\vec{r} =$
 - (c) Justify/show your work for part (b). Begin your answer below, you may use the reverse side of this sheet if necessary.

 Since curl = 0 and = has continuous partials, = 1s

 conservative.

 Thus, S=0, by the Fund. Than. for line integrals.