Math 392 Quiz 6B July 16, 2019

Name:

Instructions: No calculators! Answer <u>all</u> problems in the space provided! Do your rough work on scrap paper.

In this quiz, the less shorthand the better. For example, when writing a formula for which you need a normal vector \vec{n} , don't just write " \vec{n} ", but rather the formula used to find it. Everything is positively oriented.

1. Define the following:

(a)
$$\int_{C} f(x, y, z) ds =$$
(b)
$$\int_{C} \vec{F} \cdot d\vec{r} =$$
(c)
$$\int_{C} f(x, y, z) dy =$$

(where C is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$. No shorthand, flesh out full definition.)

- State the equation in the fundamental theorem for line integrals: ______
- 3. State the equation in Stokes' Theorem: ______
- 4. What does it mean to say " \vec{F} is conservative"?
- 5. State the equation in Green's Theorem: ______
- 6. State the equation in the Divergence Theorem: ______
- 7. Let $\vec{F} = \langle P(x, y), Q(x, y) \rangle$ be defined on an open, simply connected domain *D*. Suppose *P* and *Q* have

continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative?

8. Let $\vec{F} = \langle P(x, y), Q(x, y), R(x, y) \rangle$ be defined on an open, simply connected domain *D*. Suppose *P*, *Q*, and *R* have

continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative?

- 9. Let S_1 be a surface parametrized by $\vec{r}(s, t)$. Find a formula for a normal vector \vec{n}_1 to $S_1: \vec{n}_1 =$ ______
- 10. Let S_2 be a surface given by z = g(x, y). Find a formula for a normal vector \vec{n}_2 to S_2 : $\vec{n}_2 =$ ______

11. For
$$S_1$$
 above, define $\iint_{S_1} \vec{F}(x, y, z) \cdot d\vec{S} =$
12. For S_2 above, define $\iint_{S_2} \vec{F}(x, y, z) \cdot d\vec{S} =$