Name:

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper. In this quiz, the less shorthand the better. For example, when writing a formula for which you need a normal vector \vec{n}, don't just write " \vec{n} ", but rather the formula used to find it. Everything is positively oriented.

1. Define the following:
(a) $\int_{C} f(x, y, z) d s=$ \qquad
(b) $\int_{C} \vec{F} \cdot d \vec{r}=$ \qquad
(c) $\int_{C}^{C} f(x, y, z) d y=$ \qquad
(where C is a smooth curve parametrized by $\vec{r}(t)=<x(t), y(t), z(t)>$. No shorthand, flesh out full definition.)
2. State the equation in the fundamental theorem for line integrals:
3. State the equation in Stokes' Theorem: \qquad
4. What does it mean to say " \vec{F} is conservative"? \qquad
5. State the equation in Green's Theorem: \qquad
6. State the equation in the Divergence Theorem: \qquad
7. Let $\vec{F}=<P(x, y), Q(x, y)>$ be defined on an open, simply connected domain D. Suppose P and Q have continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative? \qquad
8. Let $\vec{F}=<P(x, y), Q(x, y), R(x, y)>$ be defined on an open, simply connected domain D. Suppose P, Q, and R have continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative? \qquad
9. Let S_{1} be a surface parametrized by $\vec{r}(s, t)$. Find a formula for a normal vector \vec{n}_{1} to $S_{1}: \vec{n}_{1}=$ \qquad
10. Let S_{2} be a surface given by $z=g(x, y)$. Find a formula for a normal vector \vec{n}_{2} to $S_{2}: \vec{n}_{2}=$ \qquad
11. For S_{1} above, define $\iint_{S_{1}} \vec{F}(x, y, z) \cdot d \vec{S}=$ \qquad
12. For S_{2} above, define $\iint_{S_{2}} \vec{F}(x, y, z) \cdot d \vec{S}=$ \qquad
