March 6, 2019

Name:		
	Name:	

Instructions: No calculators! Answer <u>all</u> problems in the space provided! Do your rough work on scrap paper.

1. Define the following:

$$(a) \int\limits_C f(x,y) \, dy = \underline{\hspace{1cm}}$$

$$(b) \int_C \vec{F} \cdot d\vec{r} = \underline{\hspace{1cm}}$$

$$(c) \int\limits_C f(x,y) \, ds = \underline{\hspace{1cm}}$$

(where C is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t) \rangle$. No shorthand, flesh out full definition.)

- 2. What does it mean to say " \vec{F} is conservative"?
- 3. State the equation in Green's Theorem:
- 4. State the equation in the fundamental theorem for line integrals: _______
- 5. Let $\vec{F} = \langle P(x,y), Q(x,y) \rangle$ be defined on an open, simply connected domain D. Suppose P and Q have continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative?
- 6. Let D be the triangle in the plane with vertices at (0,0), (2,0), and (0,1). Let C be the positively oriented boundary of D. $\left(\frac{2xy}{x^2} \frac{dx}{dx} + \left(\frac{x^2 + y^2}{x^2} \right) \frac{dy}{dx} \right) = \frac{x^2 + y^2}{x^2 + y^2}$

Set-up integrals to compute (where a sum of integrals may be necessary): $\int_C 2xy \ dx + \left(\sin y + \frac{x^2 + y^2}{2}\right) dy$

- (a) Line integral(s):
- (b) Double integral(s): _____
- (c) Compute one of the parts above to give the value of the integral in 6. Ans: _____

Bonus:

- 1. Let $\vec{F} = \langle y^2, e^x, xyz^2 \rangle$, compute:
 - (a) $curl \vec{F} =$ ______
 - (b) $\operatorname{div} \vec{F} =$
- 2. If $curl \vec{F} = \vec{0}$, then \vec{F} is called ______
- 3. If $div \, \vec{F} = \vec{0}$, then \vec{F} is called ______