Math 392 Quiz 6A

	March 6, 2019	
Na	Name:	
Name: Instructions: No calculators! Answer <u>all</u> problems in the space provided! Do your rough work on scrap paper.		
1.	Define the following:	
	$(a) \int_C f(x,y) ds = \underline{\hspace{1cm}}$	
	$\overset{\star}{c}$	
	(b) $\int \vec{F} \cdot d\vec{r} =$	
	$(b) \int\limits_C \vec{F} \cdot d\vec{r} = \underline{\hspace{1cm}}$	
	ſ	
	$(c) \int_C f(x,y) dx = \underline{\hspace{1cm}}$	
	(where \vec{C} is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t) \rangle$. No shorthand, flesh out full definition.)	
2.	State the equation in the fundamental theorem for line integrals:	
3.		
4.	What does it mean to say " $ec{F}$ is conservative"?	
5.	Let $\vec{F} = \langle P(x,y), Q(x,y) \rangle$ be defined on an open, simply connected domain D . Suppose P and Q have	
	continuous first partial derivatives on D . What equation would you use to check if \vec{F} is conservative?	
6.	Let D be the triangle in the plane with vertices at $(0,0)$, $(1,0)$, and $(0,2)$. Let C be the positively oriented boundary of D .	
	Set-up integrals to compute (where a sum of integrals may be necessary): $\int_{C} \left(\cos x + \frac{x^2 + y^2}{2}\right) dx + 2xy \ dy$	
	(a) Line integral(s):	
	(b) Double integral(s):	
	(c) Compute one of the parts above to give the value of the integral in 6. Ans:	
Во	Bonus:	
1.	Let $\vec{F} = \langle x^2, e^y, xyz \rangle$, compute:	
	(a) $curl \vec{F} =$	
	(b) $div \vec{F} =$	
2.	If $curl \vec{F} = \vec{0}$, then \vec{F} is called	

3. If $div \ \vec{F} = \vec{0}$, then \vec{F} is called ______