February 25, 2019

	February 25, 2019
Na	me:
Instructions: No calculators! Answer <u>all</u> problems in the space provided! Do your rough work on scrap paper.	
1.	Define the following:
	$(a) \int f(x,y) dy = \underline{\hspace{1cm}}$
	$(a) \int_C f(x,y) dy = \underline{\hspace{1cm}}$
	$(b) \int \vec{F} \cdot d\vec{r} =$
	$(b) \int\limits_C \vec{F} \cdot d\vec{r} = \underline{\hspace{1cm}}$
	$(c) \int_{C} f(x,y) ds = \underline{\hspace{1cm}}$
	c
	(where C is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t) \rangle$. No shorthand, flesh out full definition.)
2.	What does it mean to say " $ec{F}$ is conservative"?
3.	State the equation in the fundamental theorem for line integrals:
4.	Let $\vec{F} = \langle P(x,y), Q(x,y) \rangle$ be a vector field on an open, simply connected domain D . Suppose P and Q have
	continuous first partial derivatives on D . What equation would you use to check if \vec{F} is conservative?
5.	(a) Assume $f(x, y, z) = y \cos z + x^3 y$. Compute $\nabla f =$
	(b) Let C be the piece-wise smooth curve defined by: The line segment from $(1,1,0)$ to $(1,0,0)$, followed by the circular arc from $(1,0,0)$ to $(-1,0,0)$, then followed by another line segment from $(-1,0,0)$ to $(-2,1,\pi/2)$. Compute:
	$\int_{-\infty}^{\infty} dx$
	$\int\limits_C \nabla f \cdot d\vec{r} \; = \; \underline{\hspace{1cm}}$
	where $ec{r}(t)$ is your parametrization of ${\cal C}$.
Bo	nus:
	The field $\vec{F}=<-yz$, e^z-xz , $ye^z-xy+2>$ has a (scalar) potential function $f(x,y,z)$. You do not need to verify
	this. Find the general form of this potential function.
	$f(x,y,z) = \underline{\hspace{1cm}}$
2.	State the equation in Green's Theorem:
პ .	Describe what all the symbols mean in the equation above: