	February 25, 2019
Na	me:
Ins	me:
1.	Define the following:
	$(a) \int_C f(x,y) ds = \underline{\hspace{1cm}}$
	$\overset{\star}{c}$
	$(b) \int\limits_C \vec{F} \cdot d\vec{r} = \underline{\hspace{1cm}}$
	$\frac{J}{c}$
	(c) $\int_C f(x,y) dx =$ (where C is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t) \rangle$. No shorthand, flesh out full definition.)
	(where $\overset{\circ}{C}$ is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t) \rangle$. No shorthand, flesh out full definition.)
2.	State the equation in the fundamental theorem for line integrals:
3.	What does it mean to say " $ec{F}$ is conservative"?
4.	Let $\vec{F} = \langle P(x,y), Q(x,y) \rangle$ be defined on an open, simply connected domain D . Suppose P and Q have
	continuous first partial derivatives on D . What equation would you use to check if \vec{F} is conservative?
5.	(a) Assume $f(x, y, z) = x \sin y + x^2 z$. Compute $\nabla f =$
	(b) Let C be the piece-wise smooth curve defined by: The line segment from (1,0,3) to (1,0,0), followed by the circular arc from (1,0,0) to (-1,0,0), then followed by another line segment from (-1,0,0) to (-2, π /2, 1). Compute:
	$\int\limits_{C} \nabla f \cdot d\vec{r} = \underline{\hspace{2cm}}$ where $\vec{r}(t)$ is your parametrization of C .
	$\frac{J}{C}$ where $\vec{r}(t)$ is your parametrization of C
	where r (b) is your parametrization of c.
	nus: The field $\vec{F} = \langle e^y + yz - 2$, $xe^y + xz$, $xy >$ has a (scalar) potential function $f(x, y, z)$. You do not need to verif
1.	this. Find the general form of this potential function.
	$f(x,y,z) = \underline{\hspace{1cm}}$
2.	State the equation in Green's Theorem:
3.	Describe what all the symbols mean in the equation above:
	