Name:

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. If $\vec{F}=<P(x, y, z), Q(x, y, z), R(x, y, z)>$, define $\operatorname{div} \vec{F}=$ \qquad
2. Let S_{1} be a surface parametrized by $\vec{r}(u, v)$. Find a formula for a normal vector \vec{n}_{1} to $S_{1}: \vec{n}_{1}=$ \qquad
3. Let S_{2} be a surface given by $z=h(x, y)$. Find a formula for a normal vector \vec{n}_{2} to $S_{2}: \vec{n}_{2}=$ \qquad
4. What is the formula to compute the area of S_{1} over a region $R . \quad A=$ \qquad
5. What is the formula to compute the area of S_{2} over a region $D . A=$ \qquad
6. Let $\vec{F}=<-x^{2}, 0,2 x z-\cos x>$.
(a) Compute $\operatorname{div} \vec{F}=$ \qquad
(b) Does \vec{F} have a vector potential? \qquad (Yes/No)
(c) If your answer above is "No", write "DNE" in the space provided. If "Yes", then find a vector potential \vec{G} for \vec{F}. In doing so, you may assume the z-coordinate of \vec{G} is 0 , and set arbitrary constants of integration to 0 when convenient/appropriate.
$\vec{G}=$ \qquad
7. Set-up integrals, with specific limits, to compute the areas of the following surfaces:
(a) $\vec{r}(s, t)=<s t, s+t, s-t>, 0 \leq s, t \leq 1: \quad A=$ \qquad
(b) The part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$, and $x^{2}+y^{2}=4$:
$A=$ \qquad

Bonus:

1. For S_{1} above, define $\iint_{S_{1}} f(x, y, z) d S=$ \qquad
2. For S_{2} above, define $\iint_{S_{2}} f(x, y, z) d S=$ \qquad
(In this quiz, the less shorthand the better. Use as many variables as possible. For example, when writing a formula for which you need a normal vector \vec{n}, don't just write " \vec{n} ", but rather the formula used to find it.)
