Math 392 Quiz 4B June 25, 2019

Name: Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper. 1. If $\vec{F} = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$, define $div\vec{F} =$ 2. 3. What is the formula to compute the area of S_1 over a region R. A =______ 4. What is the formula to compute the area of S_2 over a region D. A = ______ 5. 6. Let $\vec{F} = \langle -x^2, 0, 2xz - \cos x \rangle$. (a) Compute $div \vec{F} =$ (b) Does \vec{F} have a vector potential? (Yes/No) (c) If your answer above is "No", write "DNE" in the space provided. If "Yes", then find a vector potential \vec{G} for \vec{F} . In doing so, you may assume the z-coordinate of \vec{G} is 0, and set arbitrary constants of integration to 0 when convenient/appropriate. $\vec{G} =$ 7. Set-up integrals, with specific limits, to compute the areas of the following surfaces: (a) $\vec{r}(s,t) = \langle st, s+t, s-t \rangle, 0 \le s, t \le 1$: A = _____ (b) The part of the hyperbolic paraboloid $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$, and $x^2 + y^2 = 4$:

Bonus:

1. For
$$S_1$$
 above, define $\iint_{S_1} f(x, y, z) dS =$ ______
2. For S_2 above, define $\iint_{S_2} f(x, y, z) dS =$ ______

(In this quiz, the less shorthand the better. Use as many variables as possible. For example, when writing a formula for which you need a normal vector \vec{n} , don't just write " \vec{n} ", but rather the formula used to find it.)