Name:
Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Define the following:
(a) $\int_{C} f(x, y) d y=$ $\qquad$
(b) $\int_{C} \vec{F} \cdot d \vec{r}=$ $\qquad$
(c) $\int_{C} f(x, y) d s=$ $\qquad$
(where $C$ is a smooth curve parametrized by $\vec{r}(t)=\langle x(t), y(t)\rangle$. No shorthand, flesh out full definition.)
2. For us, what is the most important interpretation of $\int_{C} \vec{F} \cdot d \vec{r}$ ? $\qquad$
3. (a) Sketch the region bounded by $z=8-x^{2}-y^{2}$ and $z=x^{2}+y^{2}$.
(b) Parametrize the curve of intersection, $C$, of the above two surfaces. Set up the limits so that the curve is traversed once.
$C: \vec{r}(t)=$ $\qquad$ Limits: $\qquad$
(c) Given $\vec{F}=\left\langle-y, x, x^{2} y^{2}\right\rangle$, find the work done by $\vec{F}$ in moving a particle around $C$ once, by:
(i) Setting up an appropriate integral: $\qquad$ (ii) Evaluating: $\qquad$
(d) Set-up: $\int_{C} x^{2} y d s=$ $\qquad$

## Bonus:

1. What does it mean for $\vec{F}$ to be "conservative"? $\qquad$
2. Suppose $\vec{F}=<P(x, y), Q(x, y)>$ and that $P, Q$, and their first order partial derivatives are continuous on $\mathbb{R}^{2}$. What equation can be checked to see if $\vec{F}$ is conservative on $\mathbb{R}^{2}$ ? $\qquad$
