N	2	m	Δ	٠

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Define the following:

$$(a) \int_C f(x,y) \, dy = \underline{\hspace{1cm}}$$

$$(b) \int_{C} \vec{F} \cdot d\vec{r} = \underline{\hspace{1cm}}$$

$$(c) \int_C f(x,y) \, ds = \underline{\hspace{1cm}}$$

(where C is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t) \rangle$. No shorthand, flesh out full definition.)

- 2. For us, what is the most important interpretation of $\int_{\vec{r}} \vec{F} \cdot d\vec{r}$?
- 3. (a) Sketch the region bounded by $z = 8 x^2 y^2$ and $z = x^2 + y^2$.

(b) Parametrize the curve of intersection, C, of the above two surfaces. Set up the limits so that the curve is traversed once.

 $C: \vec{r}(t) =$ Limits: $\leq t \leq$

(c) Given $\vec{F}=<-y,\;x,\;x^2y^2>$, find the work done by \vec{F} in moving a particle around C once, by:

(i) Setting up an appropriate integral: ______ (ii) Evaluating: _____

(d) Set-up: $\int_C x^2 y \, ds = \underline{\hspace{1cm}}$

Bonus:

- 1. What does it mean for \vec{F} to be "conservative"?
- 2. Suppose $\vec{F} = \langle P(x,y), Q(x,y) \rangle$ and that P, Q, and their first order partial derivatives are continuous on \mathbb{R}^2 .

What equation can be checked to see if $ec{F}$ is conservative on \mathbb{R}^2 ?