Math 392 Quiz 4A

June 25, 2019

NI	_	m	^	

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

- 1. Let S_1 be a surface given by z = g(x, y). Find a formula for a normal vector \vec{n}_1 to S_1 : $\vec{n}_1 =$
- 2. Let S_2 be a surface parametrized by $\vec{r}(s,t)$. Find a formula for a normal vector \vec{n}_2 to S_2 : $\vec{n}_2 =$
- 3. What is the formula to compute the area of S_1 over a region D. A =
- 4. What is the formula to compute the area of S_2 over a region R. A =
- 5. If $\vec{F} = \langle P(x, y), Q(x, y) \rangle$, define $div\vec{F} =$
- 6. Let $\vec{F} = \langle -y^2, 0, -x \cos y \rangle$.
 - (a) Compute $div \vec{F} =$
 - (b) Does \vec{F} have a vector potential? _____ (Yes/No)
 - (c) If your answer above is "No", write "DNE" in the space provided. If "Yes", then find a vector potential \vec{G} for \vec{F} . In doing so, you may assume the z-coordinate of \vec{G} is 0, and set arbitrary constants of integration to 0 when convenient/appropriate.

 $\vec{G} =$

- 7. Set-up integrals, with specific limits, to compute the areas of the following surfaces:
 - (a) $\vec{r}(u,v) = \langle uv, u+v, u-v \rangle, u^2+v^2 \leq 1$: A =______
 - (b) The part of $y = 4x + z^2$ that lies between the planes x = 0, x = 1, z = 0, and z = 1:

A =_____

Bonus:

- 1. For S_1 above, define $\iint\limits_{S_1} f(x,y,z)dS =$
- 2. For S_2 above, define $\iint_{S_2} f(x,y,z)dS =$

(In this quiz, the less shorthand the better. Use as many variables as possible. For example, when writing a formula for which you need a normal vector \vec{n} , don't just write " \vec{n} ", but rather the formula used to find it.)