Math 392 Quiz 3B

June 18, 2019
Name: \qquad
Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. What does it mean to say " \vec{F} is conservative"? \qquad
2. Define $\int_{C} f(x, y, z) d y=$ \qquad
3. Define $\int_{C} \vec{F} \cdot d \vec{r}=$ \qquad
4. Let \vec{F} be a vector field whose components have continuous first and second partials. What equation would you check to determine if \vec{F} is conservative in the following cases?
(a) $\vec{F}=<P(x, y, z), Q(x, y, z), R(x, y, z)>$; equation to check: \qquad
(b) $\vec{F}=<P(x, y), Q(x, y)>$; equation to check:
5. State the equation in the fundamental theorem for line integrals:
6. State the equation in Green's Theorem: \qquad
7. For us, what is the most important interpretation of $\int_{C} \vec{F} \cdot d \vec{r}$?
8. Find a scalar potential f for the function $\vec{F}=<y z^{2}, \tan ^{-1} z+x z^{2}, \frac{y}{1+z^{2}}+2 x y z>$: $f=$ \qquad
9. Let D be the region in the plane bounded by $x=y$ and $y=x^{2}-x$. Let C be the positively oriented boundary of D.

Set-up integrals to compute (where a sum of integrals may be necessary): $\int_{C} x^{3} y^{2} d x+\frac{1}{2} x^{4} y d y$
(a) Line integral(s): \qquad
(b) Double integral(s): \qquad
(c) Sketch the region below and orient the curve C :

Bonus:

1. Define $\operatorname{div} \vec{F}(x, y)=$ \qquad
2. If $\operatorname{curl} \vec{F}=\overrightarrow{0}$, then \vec{F} is called \qquad ; if $\operatorname{div} \vec{F}=0$, then \vec{F} is called \qquad
3. What does it mean to say " \vec{G} is a vector potential of \vec{F} "?
