Math 392 Quiz 3B June 18, 2019

Name:	
1.	What does it mean to say " $ec{F}$ is conservative"?
2.	Define $\int_{C} f(x, y, z) dy =$
3.	Define $\int \vec{F} \cdot d\vec{r} =$
4.	^c Let \vec{F} be a vector field whose components have continuous first and second partials. What equation would you check to determine if \vec{F} is conservative in the following cases?
(a)	$\vec{F} = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$; equation to check:
(b)	$\vec{F} = \langle P(x, y), Q(x, y) \rangle$; equation to check:
5.	State the equation in the fundamental theorem for line integrals:
6.	State the equation in Green's Theorem:
7.	For us, what is the most important interpretation of $\int ec{F} \cdot dec{r}$?
8.	Find a scalar potential f for the function $\vec{F} = \langle yz^2, \tan^{-1}z + xz^2, \frac{y}{1+z^2} + 2xyz \rangle$:
	<i>f</i> =
9.	Let <i>D</i> be the region in the plane bounded by $x = y$ and $y = x^2 - x$. Let <i>C</i> be the positively oriented boundary of <i>D</i> .
	Set-up integrals to compute (where a sum of integrals may be necessary): $\int_C x^3 y^2 dx + \frac{1}{2} x^4 y dy$
	(a) Line integral(s):
	(b) Double integral(s):
	(c) Sketch the region below and orient the curve C:
Bo ı 1.	Define $div \vec{F}(x, y) = $
2.	If $curl\vec{F} = \vec{0}$, then \vec{F} is called; if $div \vec{F} = 0$, then \vec{F} is called

3. What does it mean to say " \vec{G} is a vector potential of \vec{F} "?