N	ı	m	^	

Instructions: No calculators! Answer <u>all</u> problems in the space provided! Do your rough work on scrap paper.

- 1. Define $\int\limits_C \vec{F} \cdot d\vec{r} =$ ______
- 2. Define $\int_C f(x,y) dx = \underline{\hspace{1cm}}$
- 3. State the equation in the fundamental theorem for line integrals: ______
- 4. State the equation in Green's Theorem: ______
- 5. What does it mean to say " \vec{F} is conservative"? _______
 - 6. Let \vec{F} be a vector field whose components have continuous first and second partials. What equation would you check to determine if \vec{F} is conservative in the following cases?
 - (a) $\vec{F} = \langle P(x,y), Q(x,y) \rangle$; equation to check:
- (b) $\vec{F} = \langle P(x,y), Q(x,y), R(x,y) \rangle$; equation to check:
- 7. For us, what is the most important interpretation of $\int_C \vec{F} \cdot d\vec{r}$?
- 8. Find a scalar potential f for the function $\vec{F} = \langle \tan^{-1} y + z^2, \frac{x}{1+y^2}, 2xz \rangle$. $f = \underline{\qquad}$
- 9. Let D be the region in the plane bounded by $x=y^2$ and $y=x^2$. Let C be the positively oriented boundary of D. Set-up integrals to compute (where a sum of integrals may be necessary): $\int_C (xy+y^2)dx + (x-y)dy$
 - (a) Line integral(s):
 - (b) Double integral(s):
 - (c) Sketch the region below and orient the curve C:

Ronus

- 1. What does it mean to say " \vec{G} is a vector potential of \vec{F} "?
- 2. Define $\operatorname{div} \vec{F}(x, y, z) =$
- 3. If $curl \vec{F} = \vec{0}$, then \vec{F} is called _______; if $div \vec{F} = 0$, then \vec{F} is called ______