February 11, 2019

Name: _______
Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Define the following:

$$(a) \nabla f(x, y, z) = \underline{\hspace{1cm}}$$

$$(b) \int_{C} f(x,y) ds = \underline{\hspace{1cm}}$$

(where \tilde{C} is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t) \rangle$. No shorthand, flesh out full definition.)

2. Setup an integral to find the length of the curve parametrized by $x=2e^t\cos t$, $y=2e^t\sin t$ for $0\leq t\leq \pi$.

L = (Simplify the integrand, but do not evaluate the integral)

- 3. Evaluate the above integral: L =
- 4. Let $f = z \sin^2(xy)$, find $\nabla f =$
- 5. Let *C* be the line segment from (1,1) to (2,2), compute $\int_C 3x^2 ds$

Integral set-up: _____ Answer: _____

Bonus:

1. Compute $\int_C 2x \, ds$ where C consists of the quarter circle $x^2 + y^2 = 1$ in the third quadrant, traversed counterclockwise, followed by the line segment from (0,-1) to (0,-2).

Integral(s) set-up: _____ Answer: _____

2. Define $\int\limits_C \vec{F} \cdot d\vec{r} =$ ______

State the meanings of the symbols in the above: ______

(Problem 2 is all-or-nothing)

3. Define $\int_C f(x,y) dx = \underline{\hspace{1cm}}$