MATH 392 Quiz 2B

February 4, 2019

me:	
tructions: No calculators! Use your own scrap paper and write your answers in the space provided.	
Let $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, $f(x, y, z)$ be a scalar function, and $P(x_1, y_1)$ and $Q(x_2, y_2)$ be points in \mathbb{R}^2 . Complete the following rules with vector functions:	
(a) $\vec{r}'(t) =$	
(b) $\nabla f =$	
(c) Line segment $\overrightarrow{PQ} = $ (include limits))
(a) (2 points) Sketch the region bounded by $z = 8 - x^2 - y^2$ and $z = x^2 + y^2$.	
(b) Parametrize the curve of intersection, $\vec{r}_i(t)$, of the above two surfaces. Set up the limits so that the curve is traversed once.	e
$\vec{r}_i(t) =$ Limits: $\leq t \leq$	
(a) Parametrize the line segment from (-1,1,2) to (2,2,-3): $ec{r}_l(t) =$	_
(b) What is the length of the above line? $L =$	
Find a unit vector that is orthogonal to both $< -1,2,0 >$ and $< 3,4,-2 >$. $\vec{u} =$	_
nus:	
(i) The length of $\vec{r}(t)$ for $a \le t \le b$: $L =$	
(ii) $\int_C f ds = \underline{\qquad}$	
Compute the length of $\vec{r}(t) = \sqrt{7}$, $\sin^2 t$, $\cos^2 t > \text{for } 0 \le t \le \frac{\pi}{4}$:	
Integral Set-up:, Answer:	
	tructions: No calculators! Use your own scrap paper and write your answers in the space provided. Let $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, $f(x, y, z)$ be a scalar function, and $P(x_1, y_1)$ and $Q(x_2, y_2)$ be points in \mathbb{R}^2 . Complete the following rules with vector functions: (a) $\vec{r}'(t) = $