MATH 392 TEST 1 REVIEW

October 5, 2011

From Spring 2005 Final:

1. Compute the vector which describes the direction of greatest increase for the function $f(x, y)=x^{2} y^{3}$ at the point with coordinates $(2,1)$.
2. Find the equation of the tangent plane for the surface given by the equation $z=x^{2} y^{3}$ at the point with $(x, y)=(2,1)$.
3. (a) Find the surface area of of the part of the paraboloid $z=4-x^{2}-y^{2}$ contained in the first octant.
(b) Compute the directional derivative of the function $f(x, y)=x^{2} y^{3}$ in the direction from $(1,2)$ to $(4,-2)$.
4. (a) For the vector field $\mathbf{F}=\left\langle y e^{x y}-z \sin x z, x e^{x y}+y^{2},-x \sin x z\right\rangle$, compute a potential function $U(x, y, z)$ so that $\nabla U=\mathbf{F}$.
(b) Use your answer to part (a) to compute the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ from $(0,1,0)$ to $(1,2, \pi)$ along the path parametrized by $\left\langle t, t^{2}+1,2 \sin ^{-1} t\right\rangle$ with $0 \leq t \leq 1$.
5. (a) For the path parametrized by $\mathbf{r}(t)=\left\langle t, \sin t, e^{2 t}\right\rangle$, compute parametric equations for the tangent line at the point $\left(\pi, 0, e^{2 \pi}\right)$.
(b) Compute the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the path given in part (a) from $t=0$ to $t=\pi$ where $\mathbf{F}=\left\langle y \cos x, y^{2}, z^{2}\right\rangle$.
6. Let R be the region $x+2 y \leq 4 ; x \geq 0 ; y \geq 0$ in the $x y$-plane. Let C be the boundary of R, oriented counter-clockwise. Evaluate $\int_{C}\left(\sin x+y^{2}\right) d x+2 y d y$.
7. Let S be the portion of the plane $z=2-2 x-y$ which lies in the first octant. Let C be the boundary curve of S, oriented counter-clockwise as seen from above, and let $\vec{F}=\langle x, y, x y z\rangle$. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$.

From Fall 2005 Final:

1. (a) Find the area of the part of the surface $z=x y-1$ that lies inside the cylinder $x^{2}+y^{2}=4$
(b) Find a function $f(x, y, z)$ with gradient $\nabla f=\left\langle 2 x y+2 x z, x^{2}+z, x^{2}+y\right\rangle$
2. (a) Let S be the surface $z=\sqrt{x^{2}+y^{2}}$ and let P be the point $(3,4,5)$ on S.
(i)Find a normal vector to the surface S at the point P.
(ii) Find an equation of the tangent plane to the surface S at the point P.
(b) Let C be the curve parametrized by $x(t)=3 t+1, y(t)=e^{t}, z(t)=1$. Find parametric equations of the tangent line to the curve C at the point $(1,1,1)$.
3. Find the length of the parametrized curve given by the position vector $\vec{r}(t)=\left\langle\sqrt{2}, \cos ^{2} t, \sin ^{2} t\right\rangle$ with $0 \leq t \leq \frac{\pi}{2}$.
4. Let C be the boundary curve of the triangle with vertices $P(-1,0), Q(0,1)$, and $R(1,1)$, oriented counter-clockwise. Draw $P Q R$ and find $\int_{C} y^{2} d x-x^{2} d y$.
5. Let C be the curve of intersection of the cone $x^{2}+y^{2}=z^{2}$ and the plane $z=3$, and let \mathbf{F} be the vector field $y \mathbf{i}+z \mathbf{j}-x \mathbf{k}$. Let C be oriented clockwise as seen from above. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

From Spring 2006 Final:

1. Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the plane $z=1$.
2. Let $\mathbf{F}=\left\langle\frac{\ln y}{2 \sqrt{x}}+y z, \frac{\sqrt{x}}{y}+x z, x y\right\rangle$.
(a) Find a potential function $f(x, y, z)$ for \mathbf{F} so that $\nabla f=\mathbf{F}$.
(b) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the straight line segment from $P(1, e, 1)$ to $Q\left(4, e^{2}, 2\right)$.
3. Find the length of the part of the parametrized curve $\vec{r}(t)=\left\langle\frac{t^{2}}{2}, \frac{2 \sqrt{2}}{3} t^{3 / 2}, t\right\rangle$ between the points $P(0,0,0)$ and $Q\left(\frac{1}{2}, \frac{2 \sqrt{2}}{3}, 1\right)$.
4. Let R be the region in the $x y$-plane bounded by the curves $x=y^{2}$ and $y=x-2$. Find $\int_{C}-y d x+x d y$, where C is the boundary curve of R, oriented clockwise.
5. Let C be the curve of intersection of $z=x^{2}+y^{2}$ and $z=4$ with $y \geq 0$, oriented counter-clockwise as seen from above. Let $\vec{F}=\langle y, z, x\rangle$. Find $\int_{C} \vec{F} \cdot d \vec{r}$.
6. Let $\vec{F}(x, y, z)=\left\langle y e^{z}+y, x e^{z}+x+1, x y e^{z}+1\right\rangle$.
(a) Find a potential function $f(x, y, z)$ with $\nabla f=\vec{F}$.
(b) Let C be the straight line segment joining $(1,1,1)$ to $(2,2,0)$. Use the result of (a) to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$.
7. (a) Find the surface area of the part of the surface S : $z=x^{2}+y^{2}$ with $1 \leq z \leq 4$.
(b) Find the equation of the tangent plane to S at the point $(1,1,2)$.
8. Let R be the region bounded by the circle $x^{2}+y^{2}=9$ and the lines $y=-x$ and $y=0$ in the first and second quadrants. Suppose C is the boundary curve of R, oriented counter-clockwise. Evaluate $\int_{C}-y d x+x d y$.
9. Let S be the part of the surface $z=1-x^{2}$ in the first octant with $0 \leq y \leq 2$. Let C be the boundary curve of S, oriented counter-clockwise when viewed from above. If $\vec{F}=\left\langle 1,0, y^{2}\right\rangle$, calculate $\int_{C} \vec{F} \cdot d \vec{r}$.

From Spring 2008 Final:

1. Evaluae the line integral $\int_{C} 6 x^{2} d s$, where C is the part in the first quadrant of the circle of radius 4 centered at the origin.
2. Let $\vec{F}=\left\langle y^{2} e^{x y}+6 x y^{2} z, e^{x y}+x y e^{x y}+12 z+6 x^{2} y z, 12 y+3 x^{2} y^{2}\right\rangle$.
(a) Show that \vec{F} is conservative; that is, find a scalar function f such that $\vec{F}=\nabla f$.
(b) Find the work done by \vec{F} along the path from $(0,1,0)$ to $(3,4,-1)$ to $(1,-1,3)$ along two straight line segments.
3. Find the work done by the vector field $\vec{F}=\left\langle e^{x}+x^{2} y, e^{y}-x y^{2}\right\rangle$ around the circle of radius 3 centered at the origin travelled clockwise.
4. Let C be the curve of intersection of the surfaces $z=3 x-7$ and $x^{2}+y^{2}=1$, oriented clockwise as seen from above. Let $\vec{F}=\langle 4 z-1,2 x, 5 y+1\rangle$. Compute the work integral $\int_{C} \vec{F} \cdot d \vec{r}$.
