	٨						0
Name:	H	N	S	W	E	K	7

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Recall: if $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times m}$, then $A^T = \begin{bmatrix} a_{ji} \end{bmatrix}_{m \times n}$. Suppose $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{n \times m}$. Prove that $(A + B)^T = A^T + B^T$.

$$Pf: (A+B)^{T} = \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix}^{T} = \begin{bmatrix} a_{ji} + b_{ji} \end{bmatrix} = \begin{bmatrix} a_{ji} \end{bmatrix} + \begin{bmatrix} b_{ji} \end{bmatrix} = A^{T} + B^{T}.$$

2. Let
$$A = [a_{ij}]_{n \times n}$$
. Define $tr(A) = \frac{a_{ii} + a_{zz} + ... + a_{nn}}{i=1}$ or $\sum_{i=1}^{n} a_{ii}$

3. (a) Given $A = [a_{ij}]_{n \times n}$ and $B = [b_{ij}]_{n \times n}$, conjecture a formula for $tr(A + B) = \underbrace{+ r(A) + + r(B)}_{+ r(B)}$

(b) Prove your formula works:
Pf:
$$tr(A+B) = \sum_{i=1}^{\infty} (a_{ii}+b_{ii}) = \sum_{i=1}^{\infty} a_{ii} + \sum_{i=1}^{\infty} b_{ii} = tr(A) + tr(B)$$
.

$$x + 2y - z = -2$$

4. Solve the system x + z = 2 by doing the following: 2x - 4y + z = 7

(a) Write down the augmented matrix for the system:

(b) Find the reduced row-echelon form of the augmented matrix:

(c) Write down the solution as a column vector: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{2}$

Bonus: (a) If
$$A = \begin{pmatrix} 2 & -2 \\ 1 & 0 \end{pmatrix}$$
, find $A^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1/2 & 1 \end{pmatrix}$

(b) If $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$, find $\det B = 2$

(c) Is it possible to find B^{-1} ? Yes How do you know? $\det B \neq 0$

(d) Let C be the coefficient matrix of the system in problem 4. Is it possible to find C^{-1} ?