Math 346 Quiz 2A February 8, 2016

	1				
Name:	A	NS	WE	R	2

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. For the system:

$$ax_1 + by_1 = c$$
$$dx_1 + ey_1 = f$$

For the system:
$$ax_1 + by_1 = c$$

$$dx_1 + ey_1 = f$$
Assuming $ae - bd \neq 0$, write down a formula for $x_1 = \frac{\begin{vmatrix} f & e \\ ab \end{vmatrix}}{\begin{vmatrix} a & b \\ ae - bd \end{vmatrix}} = \frac{af - cd}{ae - bd}$

2. For the matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} 7 & 2 & 3 \\ 5 & 0 & -1 \\ 6 & 7 \end{bmatrix}$, what is $a_{13} = 3$?

3. Let $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & -1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 7 \\ 1 & -1 & 5 \\ 3 & 4 & 9 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Compute the following, or write "DNE", for "does not exis-

(a)
$$A + 2D = \begin{pmatrix} 3 & 0 & 3 \\ 2 & 1 & 1 \end{pmatrix}$$

(a)
$$A + 2D = \begin{pmatrix} 3 & 0 & 3 \\ 2 & 1 & 1 \end{pmatrix}$$
 (b) $AB = \begin{pmatrix} 10 & 12 & 34 \\ 4 & 5 & 18 \end{pmatrix}$

(c)
$$BA = DNE$$
 (d) $B - 3A = DNE$

$$(d) B - 3A = DNE$$

4. Suppose C and D above were multiplied to find CD. Write the size of the result, or "DNE" if they actually cannot be multiplied: 2×3

5. List the square matrices in problem 3. \mathbb{B}

True or false: Suppose AB is defined. If A has a row of zeros, then AB has a row of zeros.

7. Justify your answer in problem 6. Suppose $A = [A]_{n \times m}$ and $B = [B]_{m \times p}$. Assume $\bar{a}_{(i)} = \bar{o}_{m}$ is the it row of A. Then the ith row of AB would be [acis b, acis bz ... acis bp]=[0... o] So that AB has a row of zeros; namely, its it row.

8. Would your answer to problem 6 change if it were B that had the row of zeros?

Bonus: (a) What is
$$tr(B) = 1 + (-1) + 9 = 9$$
?

(b) Write the system in problem 1 as an augmented matrix below:

$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$$

(c) Justify your answer to problem 8.

If B had a row of zeros, the statement would be false.

Counter example: $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 2 & 2 \\ 4 & 4 \end{pmatrix}$ (many examples possible). So Bhas a row of Zeros, but AB does not.