Math 308-Review for Test \#1

Problem 1a: Explicitly write out the set $\left\{n \in \mathbb{Z} \mid n^{2}<5\right\}$.
Problem 1b: Determine the number of elements (called cardinality) of the set $\{0,2,4, \ldots, 2014\}$.
Problem 1c: Give an example of a set A, that has a subset B, such that $B \in A$.
Problem 1d: Let $S=\{0,1,2\}$, explicitly write out the set $\mathcal{P}(S)$ (the power set of S).
Problem 1e: Determine the number of elements (called cardinality) of the set $\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$.
Problem 1f: Let $A=\{\emptyset\}$. Write out explicitly $\mathcal{P}(\mathcal{P}(A))$.
Problem 2: Find the negations of the following statements, also determine if they are true/false:

- π is a rational number.
- For all $n \in \mathbb{N}, n+1 \geq 2$.
- For every $x \in \mathbb{R}$, there is a $y>0$, such that $x y=x$.
- For every $\varepsilon>0$, there is a $\delta>0$, such that $\delta<\varepsilon$.
- For any $\varepsilon>0$, there is an $N \in \mathbb{N}$, such that $|\sqrt[n]{2}-1|<\varepsilon$, for all integers $n>N$.
- For any $\varepsilon>0$, there is a $\delta>0$, such that if $|x|<\delta$, then $|\sin x|<\varepsilon$.

Problem 3: Recall that the contrapositive of the conditional statement $P \Longrightarrow Q$ is the conditional statement $\neg Q \Longrightarrow \neg P$. Construct a truth table for both of these compound statements and thereby show that they are logically equivalent.

Problem 4: Let $P(x): x=-2$ and $Q(x): x^{2}=4$ (where the variable x has domain \mathbb{R}).
Is $\forall x \in \mathbb{R}, P(x) \Longrightarrow Q(x)$ true?
Is $\forall x \in \mathbb{R}, Q(x) \Longrightarrow P(x)$ true?
Is $\forall x \in \mathbb{R}, P(x) \Longleftrightarrow Q(x)$ true?
Problem 5: Let S be a finite set. The cardinality of S is the number of elements in S and it is denoted by $|S|$. Let A, B, C be finite sets. Prove that:

$$
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|
$$

Hint: An idea: Let's say we wanted to prove $|A \cup B|=|A|+|B|-|A \cap B|$. You can prove this by noting that $|A \cup B|=|A|+|B-A|$ and $|A \cap B|+|B-A|=|B|$. These equations work since A and $B-A$ are disjoint, but their union is $A \cup B$; and $A \cap B$ and $B-A$ are disjoint, but their union is B. A similar technique could work here. Not the only way, but a nice way to do this.

Problem 6a: Prove that for all $n \in \mathbb{N}$, if $|n-1|+|n+1| \leq 1$ then $\left|n^{2}-1\right| \leq 4$.

Problem 6b: Prove that for all $x \in \mathbb{Z}$, if x is odd then $9 x+5$ is even.
Problem 6c: Prove that for all $n \in \mathbb{N}$, if $1-n^{2}>0$ then $3 n-2$ is even.
Problem 6d: Prove that for all $x \in \mathbb{Z}, x^{3}-x$ is even.
Problem 7: Let a be an integer, and n, m also integers. Suppose that $a \mid n$ and $a \mid m$ (this symbol means a divides n and a divides $m)$. Prove that $a \mid(n x+m y)$ for any two integers x, y.

Problem 8: Prove that if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ then $a \equiv c(\bmod n)$.
Problem 9: Prove that for all real $a, b>0: \frac{a}{b}+\frac{b}{a} \geq 2$.
Problem 10: Prove that for any $x \in \mathbb{R}: \sin ^{6} x+3 \sin ^{2} x \cos ^{2} x+\cos ^{6} x=1$.
Hint: Consider $\left(\sin ^{2} x+\cos ^{2} x\right)^{3}$.
Problem 11: Use Venn diagrams to illustrate that $A \cup(B \cap C)=(A \cup B) \cap(A \cap C)$. Then write a formal proof.

Problem 12: Prove that $-b \leq a \leq b$ if and only if $|a| \leq b$.
Problem 13: Some topology. Use the notation (a, b) to denote the set $\{x \in \mathbb{R} \mid a<x<b\}$, called an open interval.

Let U be a subset of \mathbb{R}. We say that U is an open set, if for any $x \in U$ there is an open interval I such that $x \in I$ and $I \subseteq U$. A subset $C \subseteq \mathbb{R}$, is called closed if C is the complement of an open set i.e. $C=\mathbb{R} \backslash U$ for some open set U.
(i) Give example of a subset $A \subseteq \mathbb{R}$ which is neither open nor closed.
(i) Let U and V be open sets. Prove that $U \cap V$ is open.
(ii) Let C and D be closed sets. Prove that $C \cup D$ is closed.
(iii) Let $U_{1}, U_{2}, U_{3}, \ldots$ be a sequence of open sets. Prove that $\bigcup_{n=1}^{\infty} U_{n}$ is open.
(iv) Let $C_{1}, C_{2}, C_{3}, \ldots$ be a sequence of closed sets. Prove that $\bigcap_{n=1}^{\infty} C_{n}$ is closed.
(v) Give example of when $\bigcap_{n=1}^{\infty} U_{n}$ need not be open, and $\bigcup_{n=1}^{\infty} C_{n}$ need not be closed.

Problem 14: Prove by contradiction that there is no smallest positive rational number.
Problem 15: Prove that the product of an irrational number and a non-zero rational number is irrational. (How is the fact that the rational number being non-zero used in the proof?)

Problem 16: Prove that $\sqrt{3}$ is irrational by following a similar proof for $\sqrt{2}$ from class.
(You can use the fact: a^{2} is divisible by 3 if and only if a is divisible by 3.)
Problem 17: Prove that the numbers $\log _{2} 3$ and $\log _{3} 2$ are irrational but their product is rational.
Problem 18: Show that there are no positive integers a, b such that $a^{2}+3=3^{b}$.

Hint: Think divisibility by 3 .
Problem 19a: If a and b are integers such that $a b=1$ prove that $a=b=1$ or $a=b=-1$.
Problem 19b: Find the solutions to the equation $x^{2}-4 y^{2}=1$ in terms of integers x and y.
Problem 20a: A polynomial $f(x)$ with integer coefficients is said to be reducible if and only if $f(x)$ factors $f(x)=g(x) h(x)$ where $g(x)$ and $h(x)$ are polynomials with integer coefficients with smaller degree than $f(x)$. For example, $x^{2}-1$ is reducible because $x^{2}-1=(x+1)(x-1)$ and $x^{3}+1$ is reducible since $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$. A polynomial $p(x)$ (with integer coefficients) is said to be irreducible iff it is not reducible. Prove that $x^{2}+1$ is irreducible by assuming it was possible to factor $x^{2}+1=(x+a)(x+b)$, equating coefficients, and obtaining a contradiction.

Problem 20b: Prove that every polynomial $f(x)$ (with integer coefficients and degree $\operatorname{deg} f(x)>$ 1) is a product of irreducible polynomials. (Hint: This is similar to the Fundamental Theorem of Arithmetic, every number $n>1$ is a product of prime numbers. It is essentially the same argument).

Problem 20c: A polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ is called monic iff its leading coefficient $a_{n}=1$. So $x^{2}+x+1$ is monic while $2 x^{2}+x+1$ is not. Prove that there are infinitely many irreducible monic polynomials. (Hint: Copy Euclid's proof that there are infinitely many primes by assuming there are only finitely many irreducible monic polynomials and obtaining a contradiction).

Problem 21: Let U be a set. For a subset X of U define its complement, written as X^{C}, as the set $X^{C}=U \backslash X$. Prove that if A and B are subsets of U then $(A \cap B)^{C}=A^{C} \cup B^{C}$. Prove this by writing out a formal proof and also by drawing a Venn diagram.

Problem 22: Prove that $x^{2015}+x^{2013}+x^{2011}+\ldots+x^{5}+x^{3}+x+1=0$ has one real solution. Hint: You need to argue by contradiction and use Rolle's Theorem (or mean-value theorem).

Problem 23: Use mathematical induction to prove that $0^{3}+1^{3}+2^{3}+\ldots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}$.
Problem 24: Prove by induction that $1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}} \geq \sqrt{n}$ for all integers $n \geq 1$.
Problem 25: Prove that $10 \mid\left(3^{4 n}-1\right)$ for all $n \in \mathbb{N}$.
Problem 26: Prove that for all real numbers $a_{1}, a_{2}, \ldots, a_{n}$:

$$
\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|
$$

(The case when $n=2$ we proved in class).
Problem 27: Define the Fibonnaci sequence: 1, 1, 2, 3, 5, 8, 13, 21,... Where the pattern is that each succesive number is the sum of the two previous numbers. Mathematically if f_{n} denotes the n-th term (counting starts at 0 not 1) in the Fibonnaci sequence then $f_{0}=f_{1}=1$ while $f_{n}+f_{n+1}=f_{n+2}$. Prove that f_{n} and f_{n+1} are relatively prime, meaning they share no
common positive divisor other than 1. Hint: Suppose this statement was false, so there would be adjacent Fibonnaci numbers with a common positive divisor greater than 1. Define the set $S=\left\{n \geq 0 \mid f_{n}\right.$ and f_{n+1} have a divisor greater than 1$\}$. This set is non-empty and so by the wellordering principle has a minimimal element m. Use this minimal element to derive a contradiction.

Problem 28: Prove that every positive integer is a sum of distinct Fibonnaci numbers.
Problem 29: Let a and b be natural numbers with $b>0$. Prove that we can write $a=q b+r$ where $q \geq 0$ and $0 \leq r<b$. The numbers q is referred to as the quotient and r is referred to as the remainder. For example, if $a=34$ and $b=5$ then $34=6 \cdot 5+4$, so $q=4$ and $r=4$, note that $0 \leq r=4<b=5$.

Hint: Let $S=\{a-n b: n \in \mathbb{N}$ and $a-n b \geq 0\}$. Show that S is a non-empty set of natural numbers. Therefore, by the well-ordering principle it has a least element, call it r. Argue by contradiction that $0 \leq r<b$. This means that $a-q b=r$ for some $q \in \mathbb{N}$.

Problem 30: Prove that $4^{n}>n^{3}$ for all $n \in \mathbb{N}$.
Problem 31: Recall that a set of real numbers is called well-ordered iff every (non-empty) subset has a least element. Prove that if A and B are well-ordered sets then $A \cup B$ is well-ordered.

