
Math 308 - Review for Test #1

Problem 1a: Explicitly write out the set {n ∈ Z | n2 < 5}.

Problem 1b: Determine the number of elements (called cardinality) of the set {0, 2, 4, ..., 2014}.

Problem 1c: Give an example of a set A, that has a subset B, such that B ∈ A.

Problem 1d: Let S = {0, 1, 2}, explicitly write out the set P(S) (the power set of S).

Problem 1e: Determine the number of elements (called cardinality) of the set {∅, {∅}, {∅, {∅}}}.

Problem 1f: Let A = {∅}. Write out explicitly P(P(A)).

Problem 2: Find the negations of the following statements, also determine if they are true/false:

• π is a rational number.

• For all n ∈ N, n+ 1 ≥ 2.

• For every x ∈ R, there is a y > 0, such that xy = x.

• For every ε > 0, there is a δ > 0, such that δ < ε.

• For any ε > 0, there is an N ∈ N, such that
∣

∣

n

√
2− 1

∣

∣ < ε, for all integers n > N .

• For any ε > 0, there is a δ > 0, such that if |x| < δ, then | sin x| < ε.

Problem 3: Recall that the contrapositive of the conditional statement P =⇒ Q is the condi-
tional statement ¬Q =⇒ ¬P . Construct a truth table for both of these compound statements
and thereby show that they are logically equivalent.

Problem 4: Let P (x) : x = −2 and Q(x) : x2 = 4 (where the variable x has domain R).
Is ∀x ∈ R, P (x) =⇒ Q(x) true?
Is ∀x ∈ R, Q(x) =⇒ P (x) true?
Is ∀x ∈ R, P (x) ⇐⇒ Q(x) true?

Problem 5: Let S be a finite set. The cardinality of S is the number of elements in S and it is
denoted by |S|. Let A,B,C be finite sets. Prove that:

|A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C|

Hint: An idea: Let’s say we wanted to prove |A ∪ B| = |A| + |B| − |A ∩ B|. You can prove this
by noting that |A ∪B| = |A|+ |B −A| and |A ∩B|+ |B −A| = |B|. These equations work since
A and B − A are disjoint, but their union is A ∪ B; and A ∩ B and B − A are disjoint, but their
union is B. A similar technique could work here. Not the only way, but a nice way to do this.

Problem 6a: Prove that for all n ∈ N, if |n− 1|+ |n+ 1| ≤ 1 then |n2 − 1| ≤ 4.
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Problem 6b: Prove that for all x ∈ Z, if x is odd then 9x+ 5 is even.

Problem 6c: Prove that for all n ∈ N, if 1− n2 > 0 then 3n− 2 is even.

Problem 6d: Prove that for all x ∈ Z, x3 − x is even.

Problem 7: Let a be an integer, and n,m also integers. Suppose that a|n and a|m (this symbol
means a divides n and a divides m). Prove that a|(nx+my) for any two integers x, y.

Problem 8: Prove that if a ≡ b(modn) and b ≡ c(modn) then a ≡ c(modn).

Problem 9: Prove that for all real a, b > 0:
a

b
+

b

a
≥ 2.

Problem 10: Prove that for any x ∈ R: sin6 x+ 3 sin2 x cos2 x+ cos6 x = 1.
Hint: Consider (sin2 x+ cos2 x)3.

Problem 11: Use Venn diagrams to illustrate that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∩ C).
Then write a formal proof.

Problem 12: Prove that −b ≤ a ≤ b if and only if |a| ≤ b.

Problem 13: Some topology. Use the notation (a, b) to denote the set {x ∈ R | a < x < b}, called
an open interval.

Let U be a subset of R. We say that U is an open set, if for any x ∈ U there is an open interval I
such that x ∈ I and I ⊆ U . A subset C ⊆ R, is called closed if C is the complement of an open
set i.e. C = R \ U for some open set U .

(i) Give example of a subset A ⊆ R which is neither open nor closed.
(i) Let U and V be open sets. Prove that U ∩ V is open.
(ii) Let C and D be closed sets. Prove that C ∪D is closed.
(iii) Let U1, U2, U3, ... be a sequence of open sets. Prove that

⋃

∞

n=1
Un is open.

(iv) Let C1, C2, C3, ... be a sequence of closed sets. Prove that
⋂

∞

n=1
Cn is closed.

(v) Give example of when
⋂

∞

n=1
Un need not be open, and

⋃

∞

n=1
Cn need not be closed.

Problem 14: Prove by contradiction that there is no smallest positive rational number.

Problem 15: Prove that the product of an irrational number and a non-zero rational number is
irrational. (How is the fact that the rational number being non-zero used in the proof?)

Problem 16: Prove that
√
3 is irrational by following a similar proof for

√
2 from class.

(You can use the fact: a2 is divisible by 3 if and only if a is divisible by 3.)

Problem 17: Prove that the numbers log2 3 and log3 2 are irrational but their product is rational.

Problem 18: Show that there are no positive integers a, b such that a2 + 3 = 3b.
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Hint: Think divisibility by 3.

Problem 19a: If a and b are integers such that ab = 1 prove that a = b = 1 or a = b = −1.

Problem 19b: Find the solutions to the equation x2 − 4y2 = 1 in terms of integers x and y.

Problem 20a: A polynomial f(x) with integer coefficients is said to be reducible if and only if
f(x) factors f(x) = g(x)h(x) where g(x) and h(x) are polynomials with integer coefficients with
smaller degree than f(x). For example, x2 − 1 is reducible because x2 − 1 = (x + 1)(x − 1) and
x3 + 1 is reducible since x3 + 1 = (x + 1)(x2 − x + 1). A polynomial p(x) (with integer coeffi-
cients) is said to be irreducible iff it is not reducible. Prove that x2 + 1 is irreducible by assuming
it was possible to factor x2+1 = (x+a)(x+b), equating coefficients, and obtaining a contradiction.

Problem 20b: Prove that every polynomial f(x) (with integer coefficients and degree deg f(x) >
1) is a product of irreducible polynomials. (Hint: This is similar to the Fundamental Theorem
of Arithmetic, every number n > 1 is a product of prime numbers. It is essentially the same
argument).

Problem 20c: A polynomial f(x) = anx
n+ an−1x

n−1+ ...+ a1x+ a0 is called monic iff its leading
coefficient an = 1. So x2 + x+ 1 is monic while 2x2 + x+ 1 is not. Prove that there are infinitely
many irreducible monic polynomials. (Hint: Copy Euclid’s proof that there are infinitely many
primes by assuming there are only finitely many irreducible monic polynomials and obtaining a
contradiction).

Problem 21: Let U be a set. For a subset X of U define its complement, written as XC , as the
set XC = U \X. Prove that if A and B are subsets of U then (A ∩ B)C = AC ∪ BC . Prove this
by writing out a formal proof and also by drawing a Venn diagram.

Problem 22: Prove that x2015+x2013+x2011+ ...+x5+x3+x+1 = 0 has one real solution. Hint:
You need to argue by contradiction and use Rolle’s Theorem (or mean-value theorem).

Problem 23: Use mathematical induction to prove that 03 + 13 + 23 + ...+ n3 = 1

4
n2(n+ 1)2.

Problem 24: Prove by induction that 1 +
1√
2
+ ...+

1√
n
≥ √

n for all integers n ≥ 1.

Problem 25: Prove that 10|(34n − 1) for all n ∈ N.

Problem 26: Prove that for all real numbers a1, a2, ..., an:

|a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|

(The case when n = 2 we proved in class).

Problem 27: Define the Fibonnaci sequence: 1, 1, 2, 3, 5, 8, 13, 21,.... Where the pattern is
that each succesive number is the sum of the two previous numbers. Mathematically if fn de-
notes the n-th term (counting starts at 0 not 1) in the Fibonnaci sequence then f0 = f1 = 1
while fn + fn+1 = fn+2. Prove that fn and fn+1 are relatively prime, meaning they share no
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common positive divisor other than 1. Hint: Suppose this statement was false, so there would
be adjacent Fibonnaci numbers with a common positive divisor greater than 1. Define the set
S = {n ≥ 0|fn and fn+1 have a divisor greater than 1}. This set is non-empty and so by the well-
ordering principle has a minimimal element m. Use this minimal element to derive a contradiction.

Problem 28: Prove that every positive integer is a sum of distinct Fibonnaci numbers.

Problem 29: Let a and b be natural numbers with b > 0. Prove that we can write a = qb + r

where q ≥ 0 and 0 ≤ r < b. The numbers q is referred to as the quotient and r is referred to as
the remainder. For example, if a = 34 and b = 5 then 34 = 6 · 5+ 4, so q = 4 and r = 4, note that
0 ≤ r = 4 < b = 5.

Hint: Let S = {a − nb : n ∈ N and a − nb ≥ 0}. Show that S is a non-empty set of natural
numbers. Therefore, by the well-ordering principle it has a least element, call it r. Argue by
contradiction that 0 ≤ r < b. This means that a− qb = r for some q ∈ N.

Problem 30: Prove that 4n > n3 for all n ∈ N.

Problem 31: Recall that a set of real numbers is called well-ordered iff every (non-empty) subset
has a least element. Prove that if A and B are well-ordered sets then A ∪ B is well-ordered.
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