
Math 308 - Review for Test #2 and the Final

Problem 1: Let A = {1, 2, 3, 4}. Come up with examples of eight different relations: (1) A rela-
tion that is reflexive, symmetris cand transitive; (2) a relation that is not reflexive, not symmetric,
not transitive; (3),(4),(5) relaitons that are exclusively one of reflexive, symmetric, transitive;
(6),(7),(8) relations that posses two of the properties, but not the third.

Problem 2: Define a relation R on R by xRy iff xy ≥ 0. Is R symmetric? Transitive? Reflexive?

Problem 3: Define a relation ∼ on Z by defining x ∼ y iff x2 = y2. Prove that ∼ is an equivalence
relation and describe the set Z/ ∼ of its equivalence classes. (Notation: Something like Z/n ≡ Zn,
it’s just a way to write the set of equivalence classes obtained from an equivalence relation.)

Problem 4: Define a relation ∼ on R as follows, ∼ = {(x, y) ∈ R× R | x− y ∈ Q}.
(i) Prove that ∼ is an equivalence relation on R.
(ii) Show that

[√
2
]

6=
[√

3
]

.

Problem 5: Define a relation ∼ on R by ∼ = {(x, y) ∈ R× R | x− y ∈ Z}.
(i) Prove that ∼ is an equivalence relation on R.
(ii) Describe what every equivalence class looks like.
(iii) What is R/ ∼ topologically?

Problem 6: Let A = (R×R)\{(0, 0)}. Define a relation ∼ on A by saying that, (x1, y1) ∼ (x2, y2)
if and only if (x1, y1) = (cx2, cy2) for some non-zero real number c ∈ R.

(i) Prove that ∼ is an equivalence relation on A.
(ii) Given a point (x, y) ∈ A, describe the equivalence class [(x, y)] geometrically.

(We often denote A/ ∼ by P1 and call it the real-projective line. One can define the real-projective
plane P2 in a similar way, and more generally Pn. This is an important construction in geometry.)

Problem 7: Let A = R× [−1, 1]. Note, [−1, 1] = {y ∈ R | − 1 ≤ y ≤ 1} and so
A = {(x, y) | x ∈ R and − 1 ≤ y ≤ 1}. Geometrically this looks like horizontal strip. Define the
relation ∼ on A by saying that (a, b) ∼ (c, d) if and only if (a − c) ∈ Z and b = (−1)(a−c)d (the
sign is determined by the parity of a − c). You do not need to prove that ∼ is an equivalence
relation on A and can assume that it is in this problem. Given an element (a, b) ∈ A describe its
equivalence class [(a, b)] geometrically.

Problem 8a: Show that,
f = { (x, 2x+ 1) | x ∈ R}

as a function f : R → R is a bijection.

Problem 8b: Show that g : Q \ {2} → Q \ {5} defined by g(x) = 5x+1
x−2

is a bijection.

Problem 9: Come up with an example of a function f : N → N that is neither injective nor
surjective. Come up with an example that is injective but no surjective, and so forth, there will
be four different examples.
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Problem 10: Let A and B be sets . Denote AB as the set of all functions from B into A. Explicitly
write out the set {0, 1}{a,b,c}. (There will be 23 = 8 such functions).

Problem 11a: Explicity write out a formula for f−1 in Problem 8a.

Problem 11b: Explicity write out a formula for f−1 in Problem 8b.

Problem 12a: Recall that a permutation on X, is a function p : X → X which is a bijection. We
use the notation Sn to denote the set of all permutations on X = {1, 2, ..., n}. Explicity write out
S3 as a set (it will have 3! = 6 permutations).

Problem 12b: Find an example of two permutations, p1 and p2 in S3, such that p1 ◦ p2 6= p2 ◦ p1.

Problem 13: Let f : A → B and g : A → B be two functions. Prove that f = g if and only if
f(a) = g(a) for any a ∈ A. (Keep in mind that f and g are sets, so to show that f = g one is
required to show that each is a subset of another.)

Problem 14: Suppose f : A → B is onto and g : B → C is onto, prove that g ◦ f : A → C is onto.

Problem 15: Let f : A → B and g : B → A be functions such that g ◦ f = idA and f ◦ g = idB.
Prove that f and g are bijective functions. Then prove that f−1 = g and g−1 = f .

Problem 16: Let f : A → B be a function. Define a relation ∼ on A as follows,

∼f = {(x, y) ∈ A× A | f(x) = f(y)}

(i) Show that ∼f is an equivalence relation on A.
(ii) Describe the equivalence class [a] more explicitly.
(iii) Define the function f : R × R → R as f(x, y) = xy. Draw the picture of (R × R)/ ∼ of

the set of all equivalence classes. (Whatever picture you get it has to be a partition of the plane).
(iv) Given any set A and any equivalent relation ∼ on it, show that there exists a set B together

with a function f : A → B, such that ∼ = ∼f . (This may be difficult if you don’t see what
set to use. Hint: consider B = A/ ∼ .)

Problem 17: Prove that the countable union of countable sets is countable. Hint: you can use a
proof similar to the one that proves |N| = |Q+|.

Problem 18: Prove that for any set A, |A| ≤ |A|. Also prove that if |A| ≤ |B| and |B| ≤ |C|,
then |A| ≤ |C|. Also, if A ⊆ B, then |A| ≤ |B|.

Problem 19: Let a > 0. We will prove that an = 1 for all n ∈ N by strong induction. Clearly the
equation is true at n = 0. Assume it is true for some k. Note that,

ak+1 =
ak · ak
ak−1

Assuming ak = 1 and ak−1 = 1 we find that ak+1 = 1·1
1
. What is the problem in this incorrect proof?
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Problem 20: Prove that the set of irrational numbers is uncountable.
(The proof should be something simple. There is a theorem: If A is a countable set then
|R \ A| = |R|; but this theorem is complete overkill. Come up with a short proof that does
not use such an advanced theorem.)

Problem 21: Recall that 2N denotes the set of all functions f : N → {0, 1}. Use Cantor’s diagonal
argument to prove that 2N is not countable. (We know that 2N has the same cardinality as R

which is uncountable but here you are asked to use the diagonal argument.)

Problem 22: If A and B are uncountable sets, then is it true that |A| = |B|?

Problem 23: Prove that if A and B are uncountable then A×B is uncountable.

Problem 24: Use the Cantor-Schroeder-Bernstein Theorem to prove that
∣

∣NN
∣

∣ = |R|.

Problem 25: Determine which infinite set is larger, RN or NR.

Problem 26: Let C be a collection of sets, use the notation
⋃ C to denote the union of all sets in

C. In Problem 17, you proved that if C is countable and every set in C is countable, then
⋃ C is

countable. Give an example of C, consisting of finite sets, such that
⋃ C is uncountable.

Problem 27: Let f : R → R be an additive function such that f(x) is always a rational number.
By additive we mean to say, f(x + y) = f(x) + f(y) for any x, y ∈ R. Prove that there exists a
real number r 6= 0, such that f(r) = 0. (Hint: First, show that f(0) = 0 and f(−x) = −f(x).
Second, assume by contradiction and use a cardinality argument.)

Problem 28: Let a ∈ ZN, in other words, a is an integer sequence. We say that a is eventually

constant, if there is an natural number k, so that ai = aj for all i, j ≥ k. Let E be the subset of
ZN consisting of all eventually constant sequences. Prove that E is countable. (Hint: You can use
the fact that Zn, the set of integer sequences of length n, is countable for every natural number
n, without proof. Therefore, by taking the union of all Zn, and calling this set F , will be a count-
able too. Because a countable union of countable sets is countable. Every eventually constant
sequence consists of a head and a tail. The head of the sequence is finite integer sequence, the
tail is constant. This observation makes it possible to define an injection of E into a countable set.)

Problem 29: Let f : [0, 1] → [0, 1] be a continous function. Prove that there exists a number
a ∈ [0, 1] so that f(a) = a. (Hint: It has nothing to do with cardinality.)

Problem 30: Show that π√
2
and 3

√
2 + 4

√
e are irrational numbers. (Assume e and π are transcen-

dental).

Problem 31: Determine whether or not the following number is irrational, cos
(

π
9

)

.
(Hint: Triple Angle Identity)

Problem 32: Determine whether or not the following number is irrational,

3

√

2 +
√
5− 3

√

−2 +
√
5
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Problem 33: Let A and B be sets of real numbers, with A ⊆ B.
(i) Prove that sup(A) ≤ sup(B)
(ii) Prove that inf(A) ≥ inf(B)

(Note: Do not assume that the supremum nor infimum are real numbers, they could be ±∞).

Problem 34: Let A be a set of real numbers with A 6= ∅. Prove that inf(A) ≤ sup(A).

Problem 35: Fix y > 0 to be a real number. Prove that given any real number x,
there exists a real number 0 < ε < y, such that x+ ε is a rational number.

(Hint: You need to use density of Q)

Problem 36: Give an explicit example of a set of rational numbers which has a rational upper
bound but no rational least upper bound. This shows that Q is not complete (which is why there
is no theory of rational analysis, instead we have real analysis).

Problem 37: If a and b are algebraic numbers then, one can show that, a + b is an algebraic
number∗. Furthermore, a · b, and a

b
(with b 6= 0), are algebraic numbers also. Prove that if a 6= 0 is

algebraic and α is transcendental then a+α and a ·α are transcendental numbers. (Hint: the proof
is easier than you might think. Rather than consider polynomials, consider the results mentioned
in this problem.)

Problem 38: Let a > 0 and x > 0 be real numbers. Prove that,

• If x2 < a, then there is a rational number q > 0, so that x2 < q2 < a.

• If x2 > a, then there is is a real number x > z > 0, so that x2 > z2 > a.

(Hint: For the first one. Try to find, 0 < ε < 1, such that (x+ ε)2 < a. Use Problem 35, to show
that we can arrange this ε in such a way, such that x + ε is rational. Now choose q = x + ε and
proof is complete. As an additional hint, use the inequality that ε2 < ε, so (x+ε)2 < x2+(1+2x)ε.
Pick the ε such that x2 + (1 + 2x)ε < a. )

(Hint: For the second one. Try to find, δ > 0, such that (x − δ)2 > a. To arrange this δ for the
inequality x2 − 2xδ + δ2 > a, it is sufficient to note that, x2 − 2xδ + δ2 > x2 − 2xδ. Now try to
arrange the δ so that x2 − 2xδ > a.)

Problem 39: Let a > 0 be a real number. Define the set A = {q ∈ Q | q2 < a}. Show that A has
a real upper bound and is non-empty. Let x = sup(A), this is a real number. Prove that x2 = a,
by using the previous problem. (This proves that square roots exist for positive reals, and that
the square roots of positive reals are themselves positive. We’ve taken this fact for granted several
times throughout the semester.)
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