MATH 209 QUIZ 3 - Version B

March 2, 2015

Name: ANSWERS
Instructions: Use your own scrap paper. Write your answers in the space provided. Simplify your answers!
1. Consider the differential equation $\frac{dy}{dt} = y(y^2 - 4)$. Use qualitative methods to analyze its
solution by doing the following:
(a) Find: steady states: $y = \frac{-2}{7}$, inflection points: $y = \frac{-2}{\sqrt{3}}$; $\frac{2}{\sqrt{3}}$
(b) (4 points) Sketch the stability graph. Include the stability arrows and smiley faces as shown in class. Label the axes, steady states and inflection points on the graph.
-2 -2 Sis, 1,p 2,sis, 1,p 5.5,
(c) (3 points) Sketch the solution graphs for the solutions having the initial values $y(0) = 1$ and $y(0) = 1.5$. Be sure to label the steady states and inflection points, draw so that concavity is accurately indicated and label all axes.
2 S.S.
1.5
1.P.
o ====>t s.s.
-2 1.P.
(d) Suppose the given ODE describes a population in units of thousands. What is the long term behavior of this population if you begin with 1.5 thousand individuals? twill decrease to almost common stay there.
Bonus: State the general ODE formulas for the following:
(a) The Malthus Model: $P = P$
(b) The Harvesting Model: $P' = P - H$
(c) The Logistic Model: $P' = rP(1 - P/k)$
(d) State the meaning of all variables used: P = current size of population, r = relative
growth rate or growth constant, H=harvesting, K= Carrying Capacity.