Name: ANSWERS
Instructions: Write your answers in the space provided. Do not show calculations on this page.

$$
\frac{d N_{1}}{d t}=0.12 N_{1}\left(1-\frac{N_{1}}{100}-\frac{N_{2}}{50}\right)
$$

1. Consider the system of ODEs:

$$
\frac{d N_{2}}{d t}=0.53 N_{2}\left(1-\frac{N_{2}}{150}-\frac{N_{1}}{50}\right)
$$

(a) State the steady states: $(0,0),(0,150),(40,30),(100,0)$ (coordinates!)
(b) Is the system competitive (Yes or No)? Yes
(c) Justify your response to (b) by any method.

	1	2
1	0.01	0.02
2	0.02	0.007
Cotainpetition table	0.03	0.027

(d) Plot the phase plot for the solution curve with initial value $\left(N_{1}, N_{2}\right)=(50,100)$. Your answer must include the graphs of nullclines, stability arrows, and the phase plot on fully labeled axes to be considered complete.

Bonus: Consider the data set: $13,3,2,15,13,10,7,13,6,3$. What are the:

$$
\text { mean }=8.5 \quad \text { mode }=13 \quad \text { median }=8.5 \quad q_{1}=3 \quad q_{3}=13
$$

