Math 205 Quiz 10 November 1, 2016

	1.101	-	20
Name:	ANSW	E	KZ

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Let f(x), g(x) and u be differentiable functions of x, c a constant. Complete the following formulas. (You may use f', g' and u' as shorthand):

(a)
$$\frac{d}{dx}(cf(x)) = \frac{cf(x)}{ca}$$
 (b) $\frac{d}{dx}(f(x) \cdot g(x)) = \frac{f'g + fg'}{ca}$ (c) $\frac{d}{dx}e^{u} = \underline{u'e^{u}}$

(a)
$$\frac{d}{dx}(cf(x)) = \frac{cf'(x)}{f'g - fg'}$$
 (b) $\frac{d}{dx}(f(x) \cdot g(x)) = \frac{f'g + fg'}{g(x)}$ (c) $\frac{d}{dx}e^{u} = \frac{u'e^{u}}{u}$ (d) $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'g - fg'}{g(x)}$ (e) $\frac{d}{dx}\ln u = \frac{u'}{u}$ (f) $\frac{d}{dx}f(g(x)) = \frac{f'(g(x)) - g'(x)}{g(x)}$

(g)
$$\frac{d}{dx}x^n = \frac{n}{\sqrt{n-1}}$$
 (h) $\frac{d}{dx}a^u = \frac{u^2 \ln a}{\sqrt{n-1}}$

2. An airplane flying at an altitude of 5 miles passes directly over a radar tower. When the distance between the tower and the airplane is 10 miles, the tower detects that its distance from the plane is changing at a rate of 240 miles per

The equation I used (before differentiating) is $y^2 = x^2 + 5^2$ (or similar)

After differentiating I have $2y \frac{dy}{dt} = 2 \times \frac{dx}{dt}$

- The half-life of an ingredient in Jhevon's hotdogs is 128 days. If the ingredient decays radioactively, answer the following; assuming you have 2 pounds of the ingredient and P(t) represents the amount of the ingredient at time t.

Differential equation: $P' = -\frac{\ln 2}{128}P$ Initial condition: P(0) = 2(b) A formula for P(t) is: $P(t) = 2e^{-\frac{\ln 2}{128}t}$

(c) After how long will there be 0.2 pounds of the ingredient? You may leave e's and $\ln s'$ in your answer: $t = \frac{1}{2}$

- 4. If $c(x) = 3 + \frac{2}{x}$ is a cost function, what is the marginal cost function? $C'(x) = -2x^{-1}$
- Use linear approximation to estimate $\sqrt{8.9}$. Write your answer as a fraction:

Bonus:

Find x-values of the critical points (if they exist) of the function $f(x) = 3x^4 - 6x^3$. List the x-values separated by commas below. If there are none, write "none".

Critical points: x = 0, 3/2

For the function above, find the absolute extrema on [1,2].

Absolute maximum(s): $f(3) = -\frac{81}{16}$