Name: \qquad
Note that both sides of each page may have printed material.

Instructions:

1. Read the instructions.
2. Do this exam, without cheating, in 2 hours and 15 minutes.
3. This exam has two parts, all problem in part 1 are compulsory, while you must choose four problems from part 2.
4. Um, that's it. This is a mock exam. Good luck!

Part 1: Do all problems in this part.

1. (4 points each part) Find $\frac{d y}{d x}=y^{\prime}$ for each of the following:
(a) $y=x \sqrt[3]{\ln x}$
(b) $y=\frac{x e^{x}}{(x+1)^{2}}$
(c) $y=\sqrt{x}\left(e^{x}+\ln x\right)^{2}$
(d) $y=\ln \left[\frac{x^{x}}{x(x+1)^{3}(x-7)}\right]$
2. (5 points each) Evaluate the following integrals:
(a) $\int \frac{(x+1)\left(x^{2}-3\right)}{x} d x$
(b) $\int \frac{5 \sqrt{\ln x}}{4 x} d x$
(c) $\int \frac{4}{e^{5 x}} d x$
(d) $\int_{0}^{1} \frac{2 x}{\sqrt{x^{2}+1}} d x$
(e) $\int_{1}^{\sqrt[3]{\ln 3}} x^{2} e^{x^{3}} d x$
3. (3 points each) Simplify the following:
(a) $e^{\ln e^{x}+y}-e^{3 \ln x}$
(b) $\ln \sqrt[3]{\frac{x(x-1)^{2} e^{2}}{\sqrt{x}\left(x^{3}+1\right)^{3}}}$
4. In 3 days, a 10 gram sample of a radioactive material decays to 3 grams. Let $P(t)$ be the mass remaining after time t in days.
(a) Find the differential equation satisfied by $P(t)$ and also its initial condition.
(b) Find $P(t)$ and simplify.
5. (a) State the limit definition to find the derivative $f^{\prime}(x)$ of a function $f(x)$ and use this definition to find $f^{\prime}(3)$ for the function $f(x)=-\frac{2}{x-1}$
(b) Use part (a) to find the tangent line to $y=f(x)$ at the point where $x=3$.

Part 2: Complete any four problems in this section. Each problem is worth 10 points.
6. For the function $f(x)=\frac{x}{1-x^{2}}$ find (provided they exist) the domain, intercepts, asymptotes, local extrema, inflection point(s), intervals of increasing and decreasing, and intervals of concavity. You may assume, without verification, that $f^{\prime}(x)=\frac{x^{2}+1}{\left(1-x^{2}\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{2 x\left(x^{2}+3\right)}{\left(1-x^{2}\right)^{3}}$.
7. (a) A particle is traveling on the curve $y^{2}+x y=2$. As the particle goes through the point $(1,1)$, the x-coordinate is decreasing at a rate of 3 units per second. Find the rate at which the y-coordinate is changing at this moment.
(b) Compute the following limits:
(i) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{1-x^{4}}$
(ii) $\lim _{x \rightarrow-\infty} \frac{3-x^{\pi}+5 x^{12}}{4+3 x^{2}-2 x^{5}-x^{12}}$
8. (a) An artist is planning to sell signed prints of her latest work. If 50 copies are offered, she can charge $\$ 400$ each. But, if she makes more than 50 prints, she must lower the price of all prints by $\$ 5$ for each print in excess of the 50 . How many prints should the artist make to maximize her revenue?
(b) Unrelated to part (a), suppose a carpenter makes and sells 3000 wooden chairs per year. For each chair, it costs him $\$ 2$ per year to store it in his warehouse. Ordering parts to make x new chairs, costs him $\$ 55$ per delivery. Find the cost function, $C(x)$, that must be minimized if the carpenter wishes to minimize his inventory cost for the chairs.
9. (a) Use Riemann sums with 4 subintervals and right hand endpoints to estimate the area under $y=$ x^{2} on $0 \leq x \leq 1$.
(c) Use integration to find the exact area under the curve, which you estimated above.
10. An object is launched from a height of 256 feet with velocity $v(t)=-32 t+96$ after t seconds.
(a) Find the position function, $s(t)$, that gives the height of the particle at time t.
(b) When will the object hit the ground?
(c) How high will the object get?
11. Roughly sketch the curves $y=-x^{2}+6 x-5$ and $y=2 x-5$ on the same pair of axes, and find the area between the curves.

