Math 203 Quiz 4B

September 17, 2015

	A -	_
Name:	ANSWER.	7

Instructions: No calculators! Answer all problems in the space provided!

1. Complete the following statements:

If θ is the angle between \vec{a} and \vec{b} , then, in terms of θ :

(a)
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \Theta$$
 (b) $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \Theta$

State the required form for the equation of a line (in 3D), and define terms in part (d):

(a) Vector form:
$$\langle x, y, \overline{z} \rangle = \langle x_0, y_0, \overline{z_0} \rangle + t \langle a, b, c \rangle$$

(b) Parametric form:
$$X = X_0 + at$$
, $y = y_0 + bt$, $Z = Z_0 + ct$
(c) Symmetric form: $\frac{X - X_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$

(c) Symmetric form:
$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

(d) Define terms/symbols above, i.e., using the same symbols you did above, state a point the line passes through and the direction of the line as a vector:

(ii) Point:
$$(x_0, y_0, Z_0)$$
 (ii) direction vector: (x_0, y_0, Z_0)

4. (a) Find the vector equation of the line that passes through the point (1, 0, 3) that is orthogonal is the two lines $L_1: x = 4 + k, y = -2 - 2k, z = 1 + 3k$ and $L_2: \frac{y-7}{2} = \frac{z+4}{4}; x = 3.$

$$\langle x, y, \overline{z} \rangle = \langle 1, 0, 3 \rangle + t \langle -14, -4, 2 \rangle$$

(b) Find the parametric equations of the line that passes through the points (1,1,4) and (5,0,-2):

(c) What is the angle between the lines L_1 and L_2 in part (a)? (you may leave inverse trig functions in your answer):

$$\theta = \frac{\cos^{-1}\left(\frac{\langle 1, -2, 3\rangle \cdot \langle 0, 2, 4\rangle}{|\langle 1, -2, 3\rangle||\langle 0, 2, 4\rangle|}\right)}{|\langle 1, -2, 3\rangle||\langle 0, 2, 4\rangle|} = \cos^{-1}\left(\frac{8}{2\sqrt{5}\sqrt{14}}\right) = \cos^{-1}\left(\frac{4}{\sqrt{5}\sqrt{14}}\right)$$

(d) What is the distance between L_1 and L_2 in part (a)? $d = \frac{|\langle 1, -9, 5 \rangle \cdot \langle -14, -4, 2 \rangle|}{|\langle 1, -9, 5 \rangle \cdot \langle -14, -4, 2 \rangle|}$

Bonus Problems:

1. (a) State the formula for the equation of a plane: $\alpha(x-x_0) + b(y-y_0) + c(z-z_0) = 0$

(b) For the above, what is the: (i) normal vector? (a,b,c) (ii) a point on the plane? (x_0,y_0,z_0)

2. Find the vector equation of the line that passes through the point (2,3,1) that is orthogonal to the plane x - 2y + 5z = 7.