September 17, 2015	
Name: ANSWERS	
Instructions: No calculators! Answer <u>all</u> problems in the space provided!	
1. State the required form for the equation of a line (in 3D), and define terms in part (d):	

(a) Vector form: $\langle x, y, \overline{z} \rangle = \langle x_0, y_0, \overline{z}_0 \rangle + t \langle a, b, c \rangle$

(b) Parametric form: $X = X_0 + at$, $y = y_0 + bt$, $Z = Z_0 + ct$ (c) Symmetric form: $\frac{X - X_0}{a} = \frac{y - y_0}{b} = \frac{Z - Z_0}{c}$

(d) Define terms/symbols above, i.e., using the same symbols you did above, state a point the line passes through and the direction of the line as a vector:

(i) Point: (X_0, Y_0, Z_0) (ii) direction vector: (a, b, c)

2. (a) Find the vector equation of the line that passes through the point (1, 0, 3) that is orthogonal is the two lines $L_1: x = 4 + k, y = -2 + 3k, z = 1 - k \text{ and } L_2: \frac{x-7}{2} = \frac{z+4}{5}; \not y = 3.$

 $\langle x, y, z \rangle = \langle 1, 0, 3 \rangle + t \langle 15, -7, -6 \rangle$

(b) Find the parametric equations of the line that passes through the points (1,0,4) and (7,-1,2):

X=1+6t, y=-t, Z=4-2t (many possible answer forms).

(c) What is the angle between the lines L_1 and L_2 in part (a)? (you may leave inverse trig functions in your answer):

 $\theta = \frac{\cos^{-1}\left(\frac{\langle 1,3,-1\rangle \cdot \langle 2,9,5\rangle}{|\langle 1,3,-1\rangle||\langle 2,9,5\rangle|}\right)}{|\langle -3,-5,3\rangle \cdot \langle 15,-7,-6\rangle|} = \cos^{-1}\left(\frac{-3}{\sqrt{11}\sqrt{29}}\right)$ (d) What is the distance between L_1 and L_2 in part (a)? $d = \frac{|\langle -3,-5,3\rangle \cdot \langle 15,-7,-6\rangle|}{|\langle -3,-5,3\rangle \cdot \langle 15,-7,-6\rangle|}$

Complete the following statements:

(a) $\vec{a} \cdot \vec{b} = 0$ iff \vec{a} and \vec{b} are $\underline{\qquad}$ (b) $\vec{a} \times \vec{b} = \vec{0}$ iff \vec{a} and \vec{b} are $\underline{\qquad}$ (c) $\vec{a} = c\vec{b}$ iff \vec{a} and \vec{b} are $\underline{\qquad}$ $\underline{\qquad}$ $\underline{\qquad}$ $\underline{\qquad}$

4. If θ is the angle between \vec{a} and \vec{b} , then, in terms of θ :

(a) $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ (b) $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$

Bonus Problems:

1. (a) State the formula for the equation of a plane: $\alpha(x-x_0) + b(y-y_0) + c(z-z_0) = 0$

(b) For the above, what is the: (i) normal vector? (a, b, c) (ii) a point on the plane? (x_0, y_0, z_0)

2. Find the vector equation of the line that passes through the point (2,3,1) that is orthogonal to the plane x - 2y + 5z = 7.

 $\langle x, y, z \rangle = \langle 2, 3, 1 \rangle + t \langle 1, -2, 5 \rangle$