| Na                                                                       | me: ANSWERS                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instructions: No calculators! Answer all problems in the space provided! |                                                                                                                                                                                                                                                                                       |
| 1.                                                                       | Suppose $F(x, y, z) = 0$ defines a level surface. Write down an equation for the tangent plane to $F(x, y, z) = 0$ at the point $(x_0, y_0, z_0)$ . $F_{\infty}(x - x_0) + F_{\gamma}(y - y_0) + F_{\gamma}(z - z_0) = 0$ (Fx, Fy, Fz evaluated at (x <sub>0</sub> , y <sub>0</sub> ) |
|                                                                          | point $(x_0, y_0, z_0)$ . $1 \times (x - x_0) + 1 \cdot y \cdot (y - y_0) + 1 \cdot z \cdot (z - z_0) = 0$                                                                                                                                                                            |
| 2.                                                                       | Find an equation of the tangent plane to the surface $x + yz^2 = 6e^{xyz}$ at the point (6,0,1).                                                                                                                                                                                      |
|                                                                          | (x-6)-35y=0                                                                                                                                                                                                                                                                           |
| 3.                                                                       | Given a function $f(x, y)$ , what criteria must be fulfilled for the function to have critical point(s)? $f_x = 0$ and $f_y = 0$ or $f_x$ and/or $f_y$ undefined                                                                                                                      |
| 4.                                                                       | What is the function "D", used to classify the critical points of $f(x,y)$ ? $D = \int x + fyy - (fxy)^2$                                                                                                                                                                             |
| 5.                                                                       | Find the classify the critical points of $f(x, y) = xy(x + y - 1)$ . (No credit for classification if the wrong critical point i given. So solve for them carefully!)                                                                                                                 |
|                                                                          | Critical point 1: (O, O) Classification Saddle point                                                                                                                                                                                                                                  |
|                                                                          | Critical point 2: (O, 1) Classification <u>Saddle point</u>                                                                                                                                                                                                                           |
|                                                                          | Critical point 3: ( ), O) Classification <u>Saddle</u> point                                                                                                                                                                                                                          |
|                                                                          | Critical point 4: ( \frac{1}{3}, \frac{1}{3}) Classification MINIMUM Point                                                                                                                                                                                                            |
| 6.                                                                       | For the function above, find the absolute max and min on the region bounded by $x = 0$ , $y = -x$ and $y = 1$ .                                                                                                                                                                       |
|                                                                          | Absolute max $f(-1,1)=1$ Absolute min $f(0,0)=f(0,1)=0$                                                                                                                                                                                                                               |
| Bonus Problems:                                                          |                                                                                                                                                                                                                                                                                       |
| 1.                                                                       | Evaluate the integral. Hint: it may be helpful to reverse the order of integration. $\int_{0}^{1} \int_{y}^{1} e^{y/x} dx dy = \underline{\qquad \qquad }$                                                                                                                            |
| 2.                                                                       | Set up an integral to compute the volume of the solid in the first octant bounded by the cylinder $z=16-y^2$ and the plane $x=5$ .  Integral set-up: $\int_0^5 \int_0^4 16-y^2  dy  dx \text{ or } \int_0^4 \int_0^5 16-y^2  dx  dy \text{ Volume: } \underbrace{\frac{640}{3}}$      |