MATH 202 Quiz 4 - Version B

September 17, 2015

NEWERS

Instructions: No calculators! Use your own scrap paper and write your answers in the space provided.

1. Complete the following rules:

Complete the following rules:

(a)
$$(f^{-1})'(x) = f'(f^{-1}(x))$$
 (b) $\frac{d}{dx}\log_a u = u \ln \alpha$ (c) $\int a^x dx = u \ln \alpha$

(d)
$$\frac{d}{dx}e^{u} = \underline{\mathcal{U}}'\underline{\mathcal{E}}'$$
 (e) $\frac{d}{dx}\ln u = \underline{\mathcal{U}}'$ (f) $\frac{d}{dx}a^{x} = \underline{\alpha}^{\times} \ln \alpha$

(g)
$$\log_a a^x = \underline{\qquad}$$
 (h) $\log_a \left(\frac{A}{B}\right) = \underline{\log_a A - \log_a B}$ (i) $\frac{d}{dx}a^u = \underline{u'a^u \mid na}$

(j)
$$\log_a b = c \Leftrightarrow \underline{\alpha} = b$$
 (k) $\log_a(AB) = \underline{\log_a A + \log_a B}$ (l) $a^{\log_a x} = \underline{\times}$

Differentiate:
(a)
$$\frac{d}{dx}(\cos(3x^4)) = \frac{-\sin(3x^4) \cdot 4x \cdot 3}{\sin(3x^4)} \cdot 4x \cdot 3 \cdot \sin(3x^4) \cdot \sin(3x$$

(c)
$$\frac{d}{dx}(\log_5 x)^x = \frac{\left(\ln x + 1\right)\left(\log_5 x\right)^x}{\left(\ln 5\right)\left(\log_5 x\right)^x} = \left(\log_5 x + \frac{1}{\ln 5}\right)\left(\log_5 x\right)^x$$
, etc.

3. Integrate:

3. Integrate:
(a)
$$\int \frac{\log_4(x-3)}{x-3} dx = \frac{\ln 4}{2} (\log_4(x-3))^2 + C$$
 (b) $\int_2^e 4^x dx = \frac{4^e - 16}{\ln 4}$

(c)
$$\int \frac{\pi^x}{1+\pi^x} dx = \frac{1}{\ln \pi} \left| n \right| 1+\pi^x \right| + C$$

Bonus:

A population, with an initial size of P_0 , grows at a rate proportional to its current size, P. Assuming its relative growth rate is r, write down equations for:

(i) The differential equation describing this growth:
$$P = P$$

The formula for P(t), the current size of the population at time t: $P(t) = P_0 e^{-t}$

2.
$$e = \frac{1}{n + \infty} \left(1 + \frac{1}{n}\right)^n$$
 (limit) $\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$