Math 201 Quiz 7B

October 24, 2014

Name: ANSWER
Instructions: No calculators. Use your own scrap. Write your fully simplified answers in the space provided. Assume all given functions ae differentiable.
1. Suppose $y = f(x)$, find the differential $dy = \int f'(x) dx$
2. For a function $f(x)$ write down the formula for its linearization at a . $L(x) = \int (a) + \int (a)(x-a)$
3. Suppose $x^2y - 6xy^2 + (9 + \pi)y = \pi$, find: (a) $\frac{dy}{dx} = \frac{2 \times y - 6y^2}{x^2 - 12 \times y + 9 + \pi}$ (b) $\frac{dx}{dy} = \frac{2 \times y - 6y^2}{x^2 - 12 \times y + 9 + \pi}$ (c) The equation of the tangent line when $y = 1$.
4. Use linear approximation or differentials to approximate $(27.1)^{\frac{2}{3}}$ by completing the following: (a) Define a function to use: $f(x) = \underbrace{x^{\frac{2}{3}}}$ (b) $x = \underbrace{27 \cdot 1}$, $a = \underbrace{27}$ (c) The formula used to make the approximation $\underbrace{f(x)} \approx \underbrace{f(\alpha) + f'(\alpha)(x - \alpha)}$ (and $a = 27$) (d) The approximate value is $\underbrace{9 + \frac{1}{45}} = \underbrace{406/45}$
5. An airplane is flying at an altitude of 4 miles and passes directly over a radar antenna. When the distance between the plane and the antenna is 8 miles, the radar detects that this distance is changing at a rate of 240 miles per hour. How fast is the plane flying? The equation I used (before differentiating) is $y = x^2 + 4^2$ (or something Similar) $y = x^2 + 4^2$ After differentiating, I have $y = x^2 + 4^2$ The plane is traveling at a speed of $y = x^2 + 4^2$ The plane is traveling at a speed of $y = x^2 + 4^2$
6. A 6-foot tall man is walking at a rate of 4 feet per second away from a light that is 12 feet above the ground. When he is 8 feet from the base of the light, (a) At what rate is the tip of his shadow moving? $\underline{S+S} = 10 \ f+/sec$
(b) At what rate is the length of his shadow changing? $\frac{5}{f+/sec}$
7. A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a rate of $2/\pi$ feet per second. At what rate is the total area A of disturbed water changing when $r=3$?
State your answer as an equation involving a derivative. $\frac{dA}{dE} = 12$
Bonus (Complete the other problems to be eligible):
(a) For a function $f(x)$, define "critical number of f'' An x -value such that $f'(x) = 0$ of $f'(x)$ is undefined.
(b) Suppose a function is defined on a closed interval $[a,b]$, define the "absolute minimum of f on $[a,b]$ " The smallest value of f on $[a,b]$