Math 201 Quiz 7A

October 24, 2014

Name: ANSWERS

Instructions: No calculators. Use your own scrap. Write your fully simplified answers in the space provided. Assume all given functions ae differentiable.	
1.	For a function $f(x)$ write down the formula for its linearization at a . $L(x) = f(a) + f'(a)(x-a)$
2.	Suppose $y = f(x)$, find the differential $dy = f'(x) dx$
3.	Suppose $x^2y - 4xy^2 + (4 + \pi^2)y = \pi^2$, find: (a) $\frac{dy}{dx} = \frac{2 \times y - 4y^2}{x^2 - 8 \times y + 4 + \pi^2}$ (b) $\frac{dx}{dy} = \frac{2 \times y - 4y^2}{2 \times y - 4y^2}$
	(c) The equation of the tangent line when $y = 1$.
4.	A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a rate of π feet per second. At what rate is the total area A of disturbed water changing when $r=2$?
	State your answer as an equation involving a derivative. $\frac{dA}{dt} = 4\pi^2$
5.	An airplane is flying at an altitude of 5 miles and passes directly over a radar antenna. When the distance between the plane and the antenna is 10 miles, the radar detects that this distance is changing at a rate of 240 miles per hour. How fast is the plane flying? The equation I used (before differentiating) is $y^2 = x^2 + 5^2$ (or something Sinilar) is $y^2 = x^2 + 5^2$. After differentiating, I have $y^2 = x^2 + 5^2$.
	After differentiating, I have $2y = 2x $
	The plane is traveling at a speed of 489/13 mph
6.	A 6-foot tall man is walking at a rate of 5 feet per second away from a light that is 15 feet above the ground. When he is 10 feet from the base of the light, (a) At what rate is the tip of his shadow moving? $5 + \frac{10}{3} = \frac{25}{3}$ $f+/sec$
	(b) At what rate is the length of his shadow changing?
7.	Use linear approximation or differentials to approximate $(8.1)^{\frac{2}{3}}$ by completing the following: (a) Define a function to use: $f(x) = \underbrace{x^{\frac{2}{3}}}$ (b) $x = \underbrace{8}$, $a = \underbrace{8}$ (c) The formula used to make the approximation $f(x) \approx f(x) \approx f(x) + f'(x)(x-a)$ (may plug in $x \approx 1$) (d) The approximate value is $\underbrace{4 + \frac{1}{3}0} = \underbrace{121/30}$
Bonus (Complete the other problems to be eligible):	
(a)	For a function $f(x)$, define "critical number of f " An x -value such that $f'(x) = 0$ or $f'(x)$ is undefined.
(b) Suppose a function is defined on a closed interval $[a,b]$, define the "absolute minimum of f on $[a,b]$ " The smallest value of f on $[a,b]$.	