Name: ____

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Complete the following rules:

(a) $x^n \cdot x^m =$ _____ (b) $x^{-a} =$ _____ (c) $x^{m/n} =$ _____ (d) $\frac{x^n}{x^m} =$ _____

(e) $x^2 - y^2 =$ ______(f) $x^3 - y^3 =$ _____

2. Graph the following, indicate all intercepts and asymptotes, provided they exist. Show their values on your sketch:

(a) $y = 2^{-x}$

(b) $y = e^x$

(c) $y = \ln x$

(d)
$$y = -\ln(x - 1) + 2$$

(e)
$$y = (1-x)(x-2)(x+1)^2$$

Bonus (after attempting the problems above, do these for extra credit):

- **1.** Simplify: $\ln \sqrt{\frac{x^2-1}{x(x+3)^3}} = \underline{\hspace{1cm}}$
- **2.** Solve for $x: e^{3x-2} = 10 \implies x =$ ______
- **3.** Suppose a bank account grows at an interest rate of r per year, and suppose the interest is compounded continuously. If P(t) represent the balance in the account after time t, and the initial principal is P_0 , write down a formula for P(t):

P(t) =