Name:

\qquad
Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Complete the following rules:
(a) $x^{n} \cdot x^{m}=$ \qquad (b) $x^{-a}=$ \qquad (c) $x^{m / n}=$ \qquad (d) $\frac{x^{n}}{x^{m}}=$ \qquad
(e) $x^{2}-y^{2}=$ \qquad (f) $x^{3}-y^{3}=$ \qquad
2. Graph the following, indicate all intercepts and asymptotes, provided they exist. Show their values on your sketch:
(a) $y=e^{x}$
(b) $y=\ln x$
(c) $y=3^{-x}$
(d) $y=-\ln (x+1)+2$
(e) $y=(1-x)(2-x)(x+1)^{2}$

Bonus (after attempting the problems above, do these for extra credit):

1. Simplify: $e^{\ln x^{2}-5 \ln y}=$ \qquad
2. Solve for $x: \ln x=9 \Rightarrow x=$ \qquad
3. Suppose a bank account grows at an interest rate of r per year, and suppose the interest is compounded continuously. If $P(t)$ represent the balance in the account after time t, and the initial principal is P_{0}, write down a formula for $P(t)$:
$P(t)=$ \qquad
