Name: \qquad
Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Complete the following rules:
(a) $x^{n} \cdot x^{m}=$ \qquad (b) $x^{-a}=$ \qquad (c) $x^{m / n}=$ \qquad (d) $\frac{x^{n}}{x^{m}}=$ \qquad
(e) $x^{2}-y^{2}=$ \qquad (f) $x^{3}-y^{3}=$ \qquad
2. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two points in the Cartesian plane. State a formula that gives the:
(a) Distance d between the two points: $d=$ \qquad
(b) The midpoint between the two points: $M=$ \qquad
3. Suppose $(-2,3)$ and $(4,1)$ lie on the diameter of a circle. For this circle, find:
(a) Its center: \qquad
(b) Its radius: \qquad
(c) Its equation: \qquad
4. The equation $2 x^{2}+2 y^{2}-8 x+12 y-4=0$ represents a circle. State its center and radius.
(i) Center: \qquad (ii) Radius: \qquad

Bonus (after attempting the problems above, do these for extra credit):

1. Suppose $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lie on a straight line. For this line:
(a) Write an equation that gives its slope:
(b) Write down the point-slope form equation of the line:
(c) Write down the slope-intercept form equation of the line: \qquad
2. Suppose m_{1} and m_{2} are the slopes of two non-vertical lines. What is the relationship between their slopes if:
(a) They are parallel: \qquad
(b) They are perpendicular: \qquad
