Math 195 Quiz 1

January 28, 2019

Instructions: No calculators. Use your own scrap. Write your fully simplified answers in the space provided.

1. Evaluate each expression without a calculator.

(a)
$$(-3)^4 =$$
 _____ (b) $-3^4 =$ ____ (c) $3^{-4} =$ ____

(b)
$$-3^4 =$$

(c)
$$3^{-4} =$$

(d)
$$\frac{5^{23}}{5^{21}} =$$
 _____ (e) $\left(\frac{2}{3}\right)^{-2} =$ _____ (f) $16^{-3/4} =$ _____

(e)
$$\left(\frac{2}{3}\right)^{-2} =$$

(f)
$$16^{-3/4} =$$

2. Expand and simplify.

(a)
$$(x+3)(4x-5) =$$

(a)
$$(x+3)(4x-5) =$$
 _____ (b) $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b}) =$ ____

(c)
$$(2x+3)^2 =$$

3. Factor each expression.

(a)
$$4x^2 - 25 =$$

(a)
$$4x^2 - 25 =$$
 _____ (b) $2x^2 + 5x - 12 =$ _____

(c)
$$x^3 - 3x^2 - 4x + 12 =$$

(c)
$$x^3 - 3x^2 - 4x + 12 =$$
 _____ (d) $x^3y - 4xy =$ _____

4. Simplify the rational expression.

(a)
$$\frac{x^2+3x+2}{x^2-x-2} =$$

(a)
$$\frac{x^2+3x+2}{x^2-x-2} =$$
 _____ (b) $\frac{x^2}{x^2-4} - \frac{x+1}{x+2} =$ _____

$$(c) \frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}} = \underline{\hspace{1cm}}$$

5. Rationalize the expression and simplify.

(a)
$$\frac{\sqrt{10}}{\sqrt{5}-2} =$$

(a)
$$\frac{\sqrt{10}}{\sqrt{5}-2} =$$
 _____ (b) $\frac{\sqrt{4+h}-2}{h} =$ _____

6. Solve the equations for all real solutions.

(a)
$$\frac{2x}{x+1} = \frac{2x-1}{x}$$
 $x =$ _

(a)
$$\frac{2x}{x+1} = \frac{2x-1}{x}$$
 $x =$ (b) $x^2 - x - 12 = 0$ $x =$

(c)
$$2x^2 + 4x + 1 = 0$$
 $x =$ ______ (d) $3|x - 4| = 10$ $x =$ ______

(d)
$$3|x-4|=10$$
 $x=$

7. Solve each inequality. Write your answer in interval notation.

(a)
$$x(x-1)(x+2) > 0$$
 $x \in$ ______(b) $|x-4| < 3$ $x \in$ _____

(b)
$$|x-4| < 3 \quad x \in$$

	8.	Find an equation	for the line that	passes through the	he point $(2, -5)$	and
--	----	------------------	-------------------	--------------------	--------------------	-----

- (a) has slope -3 _____ (b) is parallel to the x-axis _____
- (c) is parallel to the y-axis _____ (d) is parallel to 2x 4y = 3 _____
- 9. If $f(x) = x^3$, find and simplify $\frac{f(2+h)-f(2)}{h} =$

10. Find the domain of the following functions. Write in interval notation.

(a)
$$f(x) = \frac{2x+1}{x^2+x-2}$$
 D: ______ (b) $g(x) = \frac{\sqrt[3]{x}}{x^2+1}$ D: ______

11. If
$$f(x) = x^2 + 2x - 1$$
 and $g(x) = 2x - 3$, find:

(a)
$$f \circ g$$
 _____ (b) $g \circ f$ _____

12. Find the exact values.

(a)
$$\tan \frac{\pi}{3} =$$
 _____ (b) $\sin \left(\frac{7\pi}{6} \right) =$ _____ (c) $\sec \frac{5\pi}{3} =$ _____

13. Find all values of
$$x$$
 such that $\sin 2x = \sin x$ for $0 \le x \le 2\pi$. $x =$

14. Sketch the graphs of the given functions.

(a)
$$y = x^2$$

(b)
$$y = x^3$$

(c)
$$y = 4 - x^2$$

(c)
$$y = \sqrt{x}$$

(e)
$$y = \frac{1}{x}$$

(f)
$$2x + 3y = 6$$