Math 392 Quiz 8A

March 18, 2019

Name:

Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Define the following:
(a) $\int_{C} f(x, y) d s=$ \qquad
(b) $\int_{C} \vec{F} \cdot d \vec{r}=$ \qquad
(c) $\int_{C} f(x, y) d x=$ \qquad
(where C is a smooth curve parametrized by $\vec{r}(t)=\langle x(t), y(t)\rangle$. No shorthand, flesh out full definition.)
2. State the equation in the fundamental theorem for line integrals: \qquad
3. State the equation in Green's Theorem: \qquad
4. What does it mean to say " \vec{F} is conservative"? \qquad
5. What does it mean to say " \vec{G} is a vector potential of \vec{F} "? \qquad
6. Let $\vec{F}=<P(x, y), Q(x, y)>$ be defined on an open, simply connected domain D. Suppose P and Q have continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative? \qquad
7. Let $\vec{F}=<P(x, y), Q(x, y), R(x, y)>$ be defined on an open, simply connected domain D. Suppose P, Q, and R have continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative? \qquad
8. Let $\vec{F}=<x^{2}+y z, x z-y^{3}, z^{2}+x y>$:
(a) Compute $\operatorname{curl} \vec{F}=$ \qquad
(b) Compute $\int_{C} \vec{F} \cdot d \vec{r}$, where C is the negatively oriented curve in the $y z$-plane given by the line segment from $(0,-1,1)$ to $(0,1,1)$, followed by the line segment from $(0,1,1)$ to the origin, followed by another line segment from the origin to $(0,-1,1) . \int_{C} \vec{F} \cdot d \vec{r}=$ \qquad
(c) Justify/show your work for part (b). Begin your answer below, you may use the reverse side of this sheet if necessary.
