March 11, 2019	
Name:	
Name: Instructions: No calculators! Answer <u>all</u> problems in the space provided! Do your rough work on scrap paper.	
1.	Define the following:
	$(a) \int f(x,y) ds =$
	$(a) \int_C f(x,y) ds = \underline{\hspace{1cm}}$
	$(b) \int\limits_C \vec{F} \cdot d\vec{r} = \underline{\hspace{1cm}}$
	$(c) \int_C f(x,y) dx = \underline{\hspace{1cm}}$
	(where \vec{C} is a smooth curve parametrized by $\vec{r}(t) = \langle x(t), y(t) \rangle$. No shorthand, flesh out full definition.)
2.	State the equation in the fundamental theorem for line integrals:
3.	State the equation in Green's Theorem:
4.	What does it mean to say " $ec{F}$ is conservative"?
5.	Let $\vec{F} = \langle P(x,y), Q(x,y) \rangle$ be defined on an open, simply connected domain D . Suppose P and Q have
•	
	continuous first partial derivatives on D . What equation would you use to check if $ec{F}$ is conservative?
6	Let $\vec{F} = \langle P(x,y), Q(x,y), R(x,y) \rangle$ be defined on an open, simply connected domain D . Suppose P , Q , and R have
0.	Let $T = \langle T(x,y), Q(x,y), R(x,y) \rangle$ be defined on an open, simply connected domain D . Suppose T , Q , and R have
	continuous first partial derivatives on D . What equation would you use to check if \vec{F} is conservative?
7.	Let $\vec{F} = \langle x \sin y, x^2 y e^z, z \tan(xz) \rangle$, compute:
- •	
	(a) $cort\vec{F}$ –

(b) $div \vec{F} =$ _____

8. If $curl \vec{F} = \vec{0}$, then \vec{F} is called ______