Name:
Instructions: No calculators! Answer all problems in the space provided! Do your rough work on scrap paper.

1. Define the following:
(a) $\int_{C} f(x, y) d s=$ \qquad
(b) $\int_{C} \vec{F} \cdot d \vec{r}=$ \qquad
(c) $\int_{C} f(x, y) d x=$ \qquad
(where C is a smooth curve parametrized by $\vec{r}(t)=\langle x(t), y(t)\rangle$. No shorthand, flesh out full definition.)
2. State the equation in the fundamental theorem for line integrals:
3. State the equation in Green's Theorem: \qquad
4. What does it mean to say " \vec{F} is conservative"? \qquad
5. Let $\vec{F}=<P(x, y), Q(x, y)>$ be defined on an open, simply connected domain D. Suppose P and Q have continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative? \qquad
6. Let $\vec{F}=<P(x, y), Q(x, y), R(x, y)>$ be defined on an open, simply connected domain D. Suppose P, Q, and R have continuous first partial derivatives on D. What equation would you use to check if \vec{F} is conservative? \qquad
7. Let $\vec{F}=<x \sin y, x^{2} y e^{z}, z \tan (x z)>$, compute:
(a) $\operatorname{curl} \vec{F}=$ \qquad
(b) $\operatorname{div} \vec{F}=$ \qquad
8. If $\operatorname{curl} \vec{F}=\overrightarrow{0}$, then \vec{F} is called \qquad
