Math 392 - Practice Problems for Exam 1

1) Evaluate the integral

$$
\int_{C}\left(x e^{y z}\right) d s
$$

where C is the straight line segment joining $(0,0,0)$ to $(1,2,3)$.
2) Find the work done by the force field $\vec{F}=\left(2 y^{3 / 2}, 3 x \sqrt{y}\right)$ in moving an object from the point $(1,1)$ to $(2,4)$.
3) Evaluate the line integral

$$
\oint_{C}\left(y+e^{x}\right) d x+\left(2 x+\cos \left(y^{2}\right)\right) d y
$$

where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$, oriented counterclockwise.
4) Find the work done by the vector field

$$
\vec{F}(x, y, z)=\left(x y^{2} z^{2}, x^{2} y z^{2}, x^{2} y^{2} z\right)
$$

to move a particle along the curve

$$
\vec{r}(t)=\left(\cos ^{2}(t), \sin ^{2}(t), t^{3}\right), t \in[0, \pi] .
$$

5)

(a) Prove that if $\vec{F}=(P, Q, R)$ is a smooth vector field, then $\operatorname{div}(\operatorname{curl}(\vec{F}))=0$.
(b) Does there exist a vector field \vec{G} on \mathbb{R}^{3} such that

$$
\operatorname{curl}(\vec{G})=(x \sin (y), \cos (y), z-x y) ?
$$

Please justify your answer.

