Math 391 Quiz 1

June 9, 2020

Name:
Instructions: No calculators! Answer all problems in the space provided.

1. Separable or not? (" Y " or " N "):
$\frac{d y}{d x}=\frac{y+1}{x-5}: _\quad \frac{d y}{d x}=x y+x: _\quad \frac{d y}{d x}=e^{x}+y: _\quad \frac{d y}{d x}=y(y+3): \ldots \quad \frac{d y}{d x}=\frac{x-1}{y}:$
$\frac{d y}{d x}=x+2 y: \ldots \quad t d t+y e^{-t} d y=0: \ldots \quad y^{2}(1-x)^{\frac{1}{2}} d y=\arccos x d x:$
2. Linear or not? (" Y " or " N "):
$\left(1+y^{2}\right) \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+y=e^{t}: \ldots \quad y^{\prime \prime}+\sin (t+y)=\sin t: \ldots \quad x^{2} y^{\prime \prime}+x y^{\prime}+2 y=\cos x:$ \qquad
3. What is the standard form of a first order linear ODE? : \qquad
4. For the ODE above, what is the formula for its integrating factor? \qquad (equation)
5. Separate the variables. (Do not solve the ODEs!):
$\frac{d r}{d \theta}=\frac{r^{2}}{2 \theta}:$ \qquad $y^{\prime}=\frac{2 x}{y+x^{2} y}:$
$-\quad \frac{d y}{d t}=\frac{t y(3-y)}{1+t}:$ \qquad
$\frac{d y}{d t}=t y e^{3 t+y^{2}}:$ \qquad $d y=\left(x^{2} y^{2}+x^{2}-y^{2}-1\right) d x:$ \qquad
6. Solve the following ODEs:
(a) $\frac{d y}{d x}=2 y+1: y=$ \qquad (b) $\frac{d y}{d x}=\frac{3 y}{x-1}, y(0)=3: y=$
\qquad
7. If it is assumed that interest is compounded continuously, the Harvesting Model also describes the growth of money in an account. A man puts some money in a bank account earning 3% interest, compounded continuously, and makes withdrawals of $\$ 600$, every month. Suppose he puts P_{0} dollars into the account initially. Assume the function $P(t)$ describes the current balance in the account. Describe $P(t)$ using:

An ODE \qquad the initial condition for the ODE \qquad
8. Solve the ODE above. Your answer should include the P_{0} : \qquad

Bonus problems:

1. Solve the ODEs:
(a) $\frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}: y=$ \qquad
(b) $2 x y-x^{2}+\left(2 y+x^{2}+1\right) \frac{d y}{d x}=0 \quad$ Soln: \qquad
