Name:

Instructions: No calculators! Answer all problems in the space provided.

1. Separable or not? ("Y" or " N "):

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y+1}{x-5}: \longleftarrow \frac{d y}{d x}=x y+x: \sum \frac{d y}{d x}=e^{x}+y: \perp \frac{d y}{d x}=y(y+3): \sum \frac{d y}{d x}=\frac{x-1}{y}: \ldots \\
& \frac{d y}{d x}=x+2 y: \text { N } t d t+y e^{-t} d y=0: \ldots \quad y^{2}(1-x)^{\frac{1}{2}} d y=\arccos x d x \text { : }
\end{aligned}
$$

2. Linear or not? (" γ " or " N "):

$$
\left(1+y^{2}\right) \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+y=e^{t}: \quad N \quad y^{\prime \prime}+\sin (t+y)=\sin t: N x^{2} y^{\prime \prime}+x y^{\prime}+2 y=\cos x
$$

\qquad
3. What is the standard form of a first order linear ODE?: $y^{\prime}+p(t) y=g(t)$
4. For the ODE above, what is the formula for its integrating factor? $\mu(t)=e^{\int p(t) d t}$ (equation)

$$
\begin{aligned}
& \text { 5. Separate the variables. (Do not solve the ODEs!): } \\
& \frac{d r}{d \theta}=\frac{r^{2}}{2 \theta}: \frac{d r}{r^{2}}=\frac{d \theta}{2 \theta} \\
& \frac{d y}{d t}=t y e^{3 t+y^{2}}: \frac{d y}{y e^{y^{2}}}=t e^{\prime}=\frac{2 x}{y+x^{2} y}: y d y=\frac{2 x}{1+x^{2}} d x \\
& \frac{d y}{d t}=\frac{t y(3-y)}{1+t}: \frac{d y(3-y)}{y}=\frac{t}{1+t} d t=\left(x^{2} y^{2}+x^{2}-y^{2}-1\right) d x: \frac{d y}{y^{2}+1}=\left(x^{2}-1\right) d x
\end{aligned}
$$

6. Solve the following ODEs:
(a) $\frac{d y}{d x}=2 y+1: y=\frac{\frac{C e^{2 x}-1}{2}}{2}$
\qquad (b) $\frac{d y}{d x}=\frac{3 y}{x-1}, y(0)=3: y=-3(x-1)^{3}$
7. If it is assumed that interest is compounded continuously, the Harvesting Model also describes the growth of money in an account. A man puts some money in a bank account earning 3% interest, compounded continuously, and makes withdrawals of $\$ 600$, every meted. Suppose he puts P_{0} dollars into the account initially. Assume the function $P(t)$ describes the current balance in the account. Describe $P(t)$ using:
\qquad , the initial condition for the ODE $P(0)=P_{0}$
8. Solve the ODE above. Your answer should include the $P_{0}: P(t)=20000+\left(P_{0}-20000\right) e^{0.03 t}$

Bonus problems:

1. Solve the ODEs:
(a) $\frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}: y=x \tan (\ln |x|+C)$
(b) $2 x y-x^{2}+\left(2 y+x^{2}+1\right) \frac{d y}{d x}=0 \quad \operatorname{soln}: \quad x^{2} y-\frac{x^{3}}{3}+y^{2}+y=C$
