
Math 346 Test 2 
July 19, 2018 

 
 
Name: ______________________________SOLUTIONS______________________________________ 
 
Note that both sides of each page may have printed material. 

 
Instructions: 

1. Read the instructions. 
 

2. Panic!!! Kidding, don’t panic! I repeat, do NOT panic! 
 

3. Complete all problems in the actual test. Fully justify! Bonus problems are optional, and will only 
be counted if all parts of all other problems are attempted.   
 

4. Show ALL your work to receive full credit. You will get 0 credit for simply writing down the 
answers. 
 

5. Write neatly so that I am able to follow your sequence of steps and box your answers.  
 

6. Read through the exam and complete the problems that are easy (for you) first! 
 

7. Scientific calculators are allowed but not required. Graphing calculators are strictly forbidden! 
You are also NOT allowed to use notes, or other aids—including, but not limited to, divine 
intervention/inspiration, the internet, telepathy, knowledge osmosis, the internet, the smart kid 
that may be sitting beside you or that friend you might be thinking of texting. In fact, cell 
phones should be out of sight!  
 

8. Use the correct notation and write what you mean! 𝑥2 and 𝑥2 are not the same thing, for 
example, and I will grade accordingly. 
 

9. Other than that, have fun and good luck! 
 

 
 
 
 
 
 
 
 
 



1. Let 𝑫:𝑷𝟐 → 𝑷𝟐 be the differentiation operator 𝑫(𝒑) = 𝒑′(𝒙). 
 

(a) (10 points) Find [𝑫]𝑩, where 𝑩 = {𝟐, 𝟐 − 𝟑𝒙, 𝟐 − 𝟑𝒙 + 𝟖𝒙𝟐} 

 

[𝐷]𝐵 = [[𝐷 (
2
0
0
)]

𝐵

| [𝐷 (
2
−3
0
)]

𝐵

| [𝐷 (
2
−3
8
)]

𝐵

]  

= [(
0
0
0
)

𝐵

| (
−3
0
0
)

𝐵

| (
−3
16
0
)

𝐵

] …………………………………….(1) 

= (
0 −3/2 23/6
0 0 −16/3
0 0 0

)  ……………………………………………(2) 

Note, we transformed polynomials to vectors using the isomorphism 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 ↦ (

𝑎0
𝑎1
𝑎2
) 

Hence, 𝐷(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2) = 𝐷 (

𝑎0
𝑎1
𝑎2
) = 𝑎1 + 2𝑎2𝑥 = (

𝑎1
2𝑎2
0
) 

To go from the matrix in line (1) to its equivalent in basis 𝐵, you have a few options. Two 
common options would be: 

(i) Use the (
𝑛𝑒𝑤
𝑏𝑎𝑠𝑖𝑠

|
𝑜𝑙𝑑
𝑏𝑎𝑠𝑖𝑠

) method: Find the reduced row echelon form of 

(
2 2 2
0 −3 −3
0 0 8

|
0 −3 −3
0 0 16
0 0 0

). The matrix in line (2) will appear on the right side. 

(ii) Find (

𝑎0
𝑎1
𝑎2
)

𝐵

= (

𝑐1
𝑐2
𝑐3
) individually, via setting (

𝑎0
𝑎1
𝑎2
) = 𝑐1 (

2
0
0
) + 𝑐2 (

2
−3
0
) + 𝑐3 (

2
−3
8
) and 

solving for the 𝑐𝑖, either by solving the mini systems or by inspection. 
 

(b) (5 points) Use part (a) to compute [𝑫(𝟔 − 𝟔𝒙 + 𝟐𝟒𝒙𝟐)]
𝑩

. 

 
Use the equation [𝐷(𝑝)]𝐵 = [𝐷]𝐵(�⃗�)𝐵. This gives: 
 
[𝐷(6 − 6𝑥 + 24𝑥2)]𝐵 = [𝐷]𝐵[6 − 6𝑥 + 24𝑥

2]𝐵  

= (
0 −3/2 23/6
0 0 −16/3
0 0 0

)(
1
−1
3
)  

= (
13
−16
0
)   

Note: We can find [6 − 6𝑥 + 24𝑥2]𝐵 by either method (i) or (ii) shown in part (a). 
 

(c) (5 points) Compute 𝑫(𝟔 − 𝟔𝒙 + 𝟐𝟒𝒙𝟐) using the above. 

There are several ways to find this, but using our answer above means to use the 
coordinates. Since [𝐷(6 − 6𝑥 + 24𝑥2)]𝐵 =< 13,−16,0 >, we get 

𝐷(6 − 6𝑥 + 24𝑥2) = 13(
2
0
0
) − 16(

2
−3
0
) + 0(

2
−3
8
)  

= (
−6
48
0
)   

It’s easy to see this holds by computing derivatives directly. 



2. (a) (5 points) Prove that 𝑾 = {𝑨 ∈ 𝑴𝟐𝟐 ∶ 𝑨
𝑻 = 𝑨} is a subspace of 𝑴𝟐𝟐. 

 

𝑃𝑓: We need to show 𝑊 is (i) closed under addition and (ii) closed under scalar multiplication. 

Let 𝐴, 𝐵 ∈ 𝑊. Then 𝐴 = (
𝑎 𝑏
𝑏 𝑐

) and 𝐵 = (
𝑑 𝑒
𝑒 𝑓

) for 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℝ and let 𝑘 ∈ ℝ be a scalar. 

(i) Closure under addition: (𝐴 + 𝐵)𝑇 = (
𝑎 + 𝑑 𝑏 + 𝑒
𝑏 + 𝑒 𝑐 + 𝑓

)
𝑇

= (
𝑎 + 𝑑 𝑏 + 𝑒
𝑏 + 𝑒 𝑐 + 𝑓

) = 𝐴 + 𝐵. This 

means (𝐴 + 𝐵) ∈ 𝑊, since it is its own transpose. Since 𝐴, 𝐵 ∈ 𝑊 ⟹ (𝐴 + 𝐵) ∈ 𝑊, we have 𝑊 

is closed under addition. 

 

(ii) Closure under scalar multiplication: (𝑘𝐴)𝑇 = (
𝑘𝑎 𝑘𝑏
𝑘𝑏 𝑘𝑐

)
𝑇

= (
𝑘𝑎 𝑘𝑏
𝑘𝑏 𝑘𝑐

) = 𝑘𝐴. This means 

𝑘𝐴 ∈ 𝑊, since it is its own transpose. Since 𝐴 ∈ 𝑊 ⟹ 𝑘𝐴 ∈ 𝑊, we have 𝑊 is closed under 

scalar multiplication.   

 

Alternatively, we could have used the properties of transposition: 
 
Closure under addition: (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 = 𝐴 + 𝐵, and  
Closure under scalar multiplication: (𝑘𝐴)𝑇 = 𝑘𝐴𝑇 = 𝑘𝐴. 
 
In each of the above equations, the first equal sign follows by general properties of the 
transposition, while the second equal sign follows from how the members of 𝑊 are defined.  
 

(b) (10 points) Let 𝑨𝟏 = (
𝟏 𝟎
𝟎 𝟎

), 𝑨𝟐 = (
𝟎 𝟎
𝟎 𝟏

) and 𝑨𝟑 = (
𝟎 𝟏
𝟏 𝟎

). Prove that 𝑩 = {𝑨𝟏, 𝑨𝟐, 𝑨𝟑} 

is a basis for 𝑾 defined above.  

 

𝑃𝑓: We need to show that the set 𝐵 = {𝐴1, 𝐴2, 𝐴3} is (i) linearly independent and (ii) spans 𝑊. 

 

Let 𝐴 = (
𝑎 𝑏
𝑏 𝑐

) be any element in 𝑊 and set 𝑐1𝐴1 + 𝑐2𝐴2 + 𝑐3𝐴3 = 𝐴, where the 𝑐𝑖 are 

scalars.  

 

Then 𝑐1 (
1 0
0 0

) + 𝑐2 (
0 0
0 1

) + 𝑐3 (
0 1
1 0

) = (
𝑐1 𝑐3
𝑐3 𝑐2

) = (
𝑎 𝑏
𝑏 𝑐

). And so 𝑐1 = 𝑎, 𝑐2 = 𝑐, 𝑐3 = 𝑏 

will solve the equation. Thus 𝐴 is a linear combination of the vectors in 𝐵, and so 𝐵 spans 𝑊. 

 

If we let 𝐴 = 0⃗⃗ ∈ 𝑀22, then the above equation becomes, 

 

𝑐1 (
1 0
0 0

) + 𝑐2 (
0 0
0 1

) + 𝑐3 (
0 1
1 0

) = (
𝑐1 𝑐3
𝑐3 𝑐2

) = (
0 0
0 0

)  

 

And we immediately obtain that 𝑐1 = 𝑐2 = 𝑐3 = 0 is the only solution. Therefore, 𝐵 is linearly 

independent. 

 

 

 

 

 

 



3. (a) (5 points) Prove that if 𝑻𝟏: 𝑼 → 𝑽 and 𝑻𝟐: 𝑽 → 𝑾 are linear transformations of vector 
spaces, then the composition 𝑻𝟐 ∘ 𝑻𝟏: 𝑼 → 𝑾 is also a linear transformation. 
 
𝑃𝑓: We need to show that 𝑇2 ∘ 𝑇1 has the addition property and the homogeneity property.  
 
Let 𝑢1⃗⃗⃗⃗⃗, 𝑢2⃗⃗⃗⃗⃗ ∈ 𝑈, and let 𝑘 be any scalar in our field. 
 
𝑇2 ∘ 𝑇1 is additive: Note that 
 
𝑇2 ∘ 𝑇1(𝑢1⃗⃗⃗⃗⃗ + 𝑢2⃗⃗⃗⃗⃗) = 𝑇2(𝑇1(𝑢1⃗⃗⃗⃗⃗, +𝑢2⃗⃗⃗⃗⃗)) ……………………………………..by definition of composition 
= 𝑇2(𝑇1(𝑢1⃗⃗⃗⃗⃗) + 𝑇1(𝑢2⃗⃗⃗⃗⃗)) ……………………………….since 𝑇1 is additive 

= 𝑇2(𝑇1(𝑢1⃗⃗⃗⃗⃗)) + 𝑇2(𝑇1(𝑢2⃗⃗⃗⃗⃗)) …………………….....since 𝑇2 is additive 

= 𝑇2 ∘ 𝑇1(𝑢1⃗⃗⃗⃗⃗) + 𝑇2 ∘ 𝑇1(𝑢2⃗⃗⃗⃗⃗) …………………….…..by definition of composition 
 
Thus, 𝑇2 ∘ 𝑇1 is additive. 
 
𝑇2 ∘ 𝑇1 is homogeneic: Note that  

𝑇2 ∘ 𝑇1(𝑘𝑢1⃗⃗⃗⃗⃗) = 𝑇2(𝑇1(𝑘𝑢1⃗⃗⃗⃗⃗)) …………………………………………………by definition of composition 

= 𝑇2(𝑘𝑇1(𝑢1⃗⃗⃗⃗⃗)) …………………………………………..……by homogeneity property of 𝑇1 

= 𝑘𝑇2(𝑇1(𝑢1⃗⃗⃗⃗⃗)) ………………………………..………………by homogeneity property of 𝑇2 

= 𝑘𝑇2 ∘ 𝑇1(𝑢1⃗⃗⃗⃗⃗) …………………………………………..……by definition of composition 
 
Thus 𝑇2 ∘ 𝑇1 possesses the homogeneity property. 
 
Since 𝑇2 ∘ 𝑇1 has both these properties, it is a linear transformation.  
 
 
(b) (5 points) A linear transformation is called an isomorphism if it is one-to-one and onto. If 
there is an isomorphism between two vector spaces, then the vector spaces are said to be 
isomorphic. Prove that the property of being isomorphic is transitive. That is, prove that if 
𝑼,𝑽 and 𝑾 are vector spaces, and 𝑼 is isomorphic to 𝑽 and 𝑽 is isomorphic to 𝑾, then 𝑼 is 
isomorphic to 𝑾. 
 
𝑃𝑓: Assume that 𝑈 and 𝑉 are isomorphic, and 𝑉 and 𝑊 are isomorphic. That is, there exist 
bijective linear transformations 𝑇1: 𝑈 → 𝑉 and 𝑇2: 𝑉 → 𝑊. We show that 𝑈 and 𝑊 are 
isomorphic. That is, there exists a bijective linear transformation from 𝑈 to 𝑊.  
 
We claim that 𝑇2 ∘ 𝑇1: 𝑈 → 𝑊 is such a transformation. By part (a) above, it is a linear 
transformation. And we’ve previously shown (in class) that a composition is both one-to-one 
and onto if the functions that make up the composition are each one-to-one and onto. So, the 
composition of bijections is itself a bijection.  
 
Hence, 𝑇2 ∘ 𝑇1 is a bijective linear transformation from 𝑈 to 𝑊, and so we have 𝑈 is isomorphic 
to 𝑊. 
 
 

  



4. Let 𝑨 = (

𝟏 𝟐 𝟑 𝟑 𝟎
𝟐 𝟒 𝟕 𝟕 𝟎
𝟑 𝟔 𝟗 𝟗 −𝟏
𝟏 𝟐 𝟒 𝟒 𝟏

) 

 
(a) (8 points) Find a basis for the column space of 𝑨 

 

(

1 2 3 3 0
0 0 1 1 0
0 0 0 0 1
0 0 1 1 1

)𝑅2 − 2𝑅1
3𝑅1 − 𝑅3
𝑅4 − 𝑅1

 

 

(

1 2 3 3 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1

)

𝑅4 − 𝑅2

 

 

(

1 2 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

)

𝑅1 − 3𝑅2

𝑅3 − 𝑅4

 

 

⟹ 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑐𝑜𝑙(𝐴) = {(

1
2
3
1

) ,(

3
7
9
4

) ,(

0
0
−1
1

)}  

 
(b) (6 points) Find a basis for the null space of 𝑨 

By the above, if we consider 𝐴�⃗� = 0⃗⃗, we get 𝑥2 = 𝑡, 𝑥4 = 𝑟. And consequently, 𝑅3 gives 
𝑥5 = 0, 𝑅2 gives 𝑥3 = −𝑥4 = −𝑟, and 𝑅1 gives 𝑥1 = −2𝑥2 = −2𝑡. 

So, �⃗� =

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
=

(

 
 

−2𝑡
𝑡
−𝑟
𝑟
0 )

 
 
= 𝑡

(

 
 

−2
1
0
0
0 )

 
 
+ 𝑟

(

 
 

0
0
−1
1
0 )

 
 

 solves the homogeneous equation. 

 

And we get 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑁𝑢𝑙𝑙(𝐴) =

{
 
 

 
 

(

 
 

−2
1
0
0
0 )

 
 
,

(

 
 

0
0
−1
1
0 )

 
 

}
 
 

 
 

 

 
(c) (4 points) Find 𝒓𝒂𝒏𝒌(𝑨) and 𝑵𝒖𝒍𝒍𝒊𝒕𝒚(𝑨). 

 

𝑅𝑎𝑛𝑘(𝐴) = 3 = # 𝑜𝑓 𝑝𝑖𝑣𝑜𝑡𝑠 𝑖𝑛 𝑅𝑅𝐸𝐹(𝐴)  

𝑁𝑢𝑙𝑙𝑖𝑡𝑦(𝐴) = 2 = # 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 (𝑏) = dim(𝑁𝑢𝑙𝑙(𝐴)) = (# 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) − 𝑅𝑎𝑛𝑘(𝐴)  

 
 

(d) (2 points) The correct answer to (c) is an example of a general principle. What is this 
principle? 
 
The Dimension Theorem (for Matrices) 



5. (a) (5 points) Let 𝑺 be a finite set of linearly independent vectors. Prove that any non-empty 
subset of 𝑺 is also a linearly independent set. Hint: a proof by contradiction is a good way to go. 
 
𝑃𝑓: Let 𝐵 ⊆ 𝑆 and 𝐵 ≠ ∅. Clearly, if 𝐵 = 𝑆 the claim is true. So let us assume 𝐵 ≠ 𝑆.  
 

For convenience, let us write 𝑆 = {𝑏1⃗⃗ ⃗⃗ , 𝑏2⃗⃗⃗⃗⃗, 𝑏3⃗⃗⃗⃗⃗, … , 𝑏𝑚⃗⃗ ⃗⃗ ⃗⃗ , 𝑏𝑚+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, … , 𝑏𝑛⃗⃗⃗⃗⃗} and let 𝐵 be the subset 

containing the first 𝑚 elements, that is, 𝐵 = {𝑏1⃗⃗ ⃗⃗ , 𝑏2⃗⃗⃗⃗⃗, 𝑏3⃗⃗⃗⃗⃗, … , 𝑏𝑚⃗⃗ ⃗⃗ ⃗⃗ }. 
 
Assume, to the contrary that 𝐵 is linearly dependent. Then the equation, 

𝑐1𝑏1⃗⃗ ⃗⃗ + 𝑐2𝑏2⃗⃗⃗⃗⃗ + ⋯+ 𝑐𝑚𝑏𝑚⃗⃗ ⃗⃗ ⃗⃗ = 0⃗⃗ 
has a non-trivial solution for the 𝑐𝑖. That means, at least one of the 𝑐𝑖 ≠ 0. WLOG, assume 𝑐1 ≠ 0. 
 

Then the equation 𝑐1𝑏1⃗⃗ ⃗⃗ + 0 ⋅ 𝑏2⃗⃗⃗⃗⃗ + ⋯+ 0 ⋅ 𝑏𝑚⃗⃗ ⃗⃗ ⃗⃗ + 0 ⋅ 𝑏𝑚+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ + ⋯+ 0 ⋅ 𝑏𝑛⃗⃗⃗⃗⃗ = 0⃗⃗ shows that there is 

a 0⃗⃗-linear combination of vectors in 𝑆 where the scalars are not all zero. This yields that 𝑆 is 
dependent, and we obtain a contradiction.  
 

 
 
 
 

(b) (5 points) Suppose 𝑺 = {�⃗⃗⃗�, �⃗⃗⃗�} is a linearly independent set. Prove that 𝑩 = {�⃗⃗⃗� + �⃗⃗⃗�, �⃗⃗⃗� − �⃗⃗⃗�} 
is also linearly independent. �⃗⃗� + �⃗� 
 

𝑃𝑓: Set 𝑐1(�⃗⃗� + �⃗�) + 𝑐2(�⃗⃗� + �⃗�) = 0⃗⃗. We need to show that 𝑐1 = 𝑐2 = 0. Rewriting the left 

side of the first equation, we get (𝑐1 + 𝑐2)�⃗⃗� + (𝑐1 − 𝑐2)�⃗� = 0⃗⃗. Since �⃗⃗� and �⃗� are linearly 
independent and (𝑐1 + 𝑐2) and (𝑐1 − 𝑐2) are scalars, we must have  

𝑐1 + 𝑐2 = 0 
𝑐1 − 𝑐2 = 0 

Solving this system gives 𝑐1 = 𝑐2 = 0, and hence 𝐵 is linearly independent.  
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. (a) (10 points) Suppose 𝑻:ℝ𝟐 → ℝ𝟐 is a linear transformation obtained by first reflecting over 

the 𝒙-axis, then rotating counter-clockwise by an angle of 
𝝅

𝟐
. Find the standard matrix for 𝑻. Is 

𝑻 one-to-one? Justify. 
 
Using the transformations geometrically as shown in class or based on the handout posted on 
the class webpage: http://math.sci.ccny.cuny.edu/docs?name=MatrixTransformsInR2andR3.pdf 
We have the following transformations: 
 

Set 𝑇1 = (
1 0
0 −1

) → the matrix transformation to reflect over the 𝑥-axis. 

Set 𝑇2 = (
cos

𝜋

2
−sin

𝜋

2

sin
𝜋

2
cos

𝜋

2

) = (
0 −1
1 0

) → the matrix transformation to rotate CCW by 𝜃 =
𝜋

2
. 

Then we can construct [𝑇] by first applying 𝑇1 then applying 𝑇2. That is,  
 

[𝑇] = 𝑇2 ∘ 𝑇1 = (
0 −1
1 0

) (
1 0
0 −1

) = (
0 1
1 0

)  

Since det[𝑇] ≠ 0, 𝑇 is 1-1 by the equivalence theorem.  
 
 
 
 

(b) (10 points) Determine if the following linear operator 𝑻:ℝ𝟑 → ℝ𝟑 is one-to-one, and 

whether 𝑻−𝟏 exists. 𝑻 is defined via 

𝒘𝟏 = 𝟐𝒙𝟏 + 𝟐𝒙𝟐 + 𝒙𝟑
𝒘𝟐 = 𝟐𝒙𝟏 + 𝒙𝟐 − 𝒙𝟑
𝒘𝟑 = 𝟑𝒙𝟏 + 𝟐𝒙𝟐 + 𝒙𝟑

 

 

Note that [𝑇] = (
2 2 1
2 1 −1
3 2 1

) and so det[𝑇] = −3 ≠ 0. 

 
Since det[𝑇] ≠ 0, we have that 𝑇 is one-to-one.  
 
Since 𝑇 is an operator (and hence the dimension of its domain space and range space are 
the same), 𝑇 is also onto. Since 𝑇 is one-to-one and onto, it is invertible, and so [𝑇]−1 exists.  
 
All these statements follow via the equivalence theorem. 
 
 

 

  

http://math.sci.ccny.cuny.edu/docs?name=MatrixTransformsInR2andR3.pdf


 

Bonus Problems: You must attempt all parts of all other problems to be eligible. 

 

1.  Consider the matrix 𝑨 = (
𝟑 𝟒
−𝟏 −𝟐

).  

(a) (10 points) Find the eigenvalues and corresponding eigenvectors of 𝑨. 

 

Set det (
𝜆 − 3 −4
1 𝜆 + 2

) = 0 

 

⟹ (𝜆 − 3)(𝜆 + 2) + 4 = 0  

⟹ 𝜆2 − 𝜆 − 2 = 0  
⟹ (𝜆 − 2)(𝜆 + 1) = 0  

⟹ 𝜆1 = 2, 𝜆2 = −1 → 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  

 

If 𝜆1 = 2, we get the system 

(
−1 −4
1 4

|
0
0
)   

(
 1 4 
 0 0 

|
0
0
)
𝑅2          
𝑅1 + 𝑅2

  

⟹ (
𝑥1
𝑥2
) = (

−4𝑡
𝑡
) = 𝑡 (

−4
1
)  

⟹ 𝜆1⃗⃗⃗⃗⃗ = (
−4
1
) → eigenvector for 𝜆1 = 2 

 

If 𝜆2 = −1, we get the system 

(
−4 −4
1 1

|
0
0
)   

(
 1 1 
 0 0 

|
0
0
)
𝑅2             
4𝑅2 + 𝑅1

  

⟹ (
𝑥1
𝑥2
) = (

−𝑡
𝑡
) = 𝑡 (

−1
1
)  

⟹ 𝜆2⃗⃗⃗⃗⃗ = (
−1
1
) → eigenvector for 𝜆2 = −1 

(b) (2 points) Find an invertible matrix 𝑷 and a diagonal matrix 𝑫 such that 𝑫 = 𝑷−𝟏𝑨𝑷.  

Set 𝐷 = (
𝜆1 0
0 𝜆2

) , 𝑃 = (𝜆1⃗⃗⃗⃗⃗|𝜆2⃗⃗⃗⃗⃗) 

⟹ 𝐷 = (
2 0
0 −1

) , 𝑃 = (
−4 −1
1 1

)   

 

Note that 𝑃−1 = −
1

3
(
1 1
−1 −4

) = (
−1/3 −1/3
1/3 4/3

), and so, one can check that 

𝐴 = 𝑃𝐷𝑃−1 = (
−4 −1
1 1

) (
2 0
0 −1

)(
−1/3 −1/3
1/3 4/3

)  

 

 

(c) (5 points) Compute 𝑨𝟓, write as a 2x2 matrix. 

 

𝐴5 = (
−4 −1
1 1

) (
2 0
0 −1

)
5

(
−1/3 −1/3
1/3 4/3

) = −
1

3
(
−4 −1
1 1

)(
32 0
0 −1

) (
1 1
−1 −4

)  

= (
43 44
−11 −12

)   

 

 

 



 

(d)  (3 points) Solve the following system for the functions 𝒚𝟏(𝒕) and 𝒚𝟐(𝒕), subject to the initial 

conditions 𝒚𝟏(𝟎) = 𝟏 and 𝒚𝟐(𝟎) = 𝟐. 

{
𝒚𝟏′(𝒕) = 𝟑𝒚𝟏(𝒕) + 𝟒𝒚𝟐(𝒕)

𝒚𝟐′(𝒕) = −𝒚𝟏(𝒕) − 𝟐𝒚𝟐(𝒕)
} 

 

From part (a) we have 𝜆1 = 2,   𝜆1⃗⃗⃗⃗⃗ = (
−4
1
) and 𝜆2 = −1,   𝜆2⃗⃗⃗⃗⃗ = (

−1
1
). 

⟹ (
𝑦1
𝑦2
) = 𝑐1 (

−4
1
) 𝑒2𝑡 + 𝑐2 (

−1
1
) 𝑒−𝑡   → if you get up to here, you’ll get 2 out of the 3 points 

 

This means,  

𝑦1 = −4𝑐1𝑒
2𝑡 − 𝑐2𝑒

−𝑡  

𝑦2 = 𝑐1𝑒
2𝑡 + 𝑐2𝑒

−𝑡  

 

Then, applying the initial conditions to each of these equations, 

𝑦1(0) = 1 ⟹ 1 = −4𝑐1 − 𝑐2  

𝑦2(0) = 2 ⟹ 2 = 𝑐1 + 𝑐2  

 

Solving this system gives 𝑐1 = −1 and 𝑐2 = 3. Thus, 

 

⟹ (
𝑦1
𝑦2
) = −(

−4
1
)𝑒2𝑡 + 3(

−1
1
)𝑒−𝑡    OR   

𝑦1 = 4𝑒
2𝑡 − 3𝑒−𝑡

𝑦2 = −𝑒
2𝑡 + 3𝑒−𝑡

 

 

  



 

 
 
 
 
 
 

 
 
 
 
 

 


