
Math 308 Test 1 
June 28, 2018 

 
 
Name: _______________________________SOLUTIONS______________________________________ 
 
Note that both sides of each page may have printed material. 
 
Instructions: 

1. Read the instructions. 
 

2. Panic!!! Kidding, don’t panic! I repeat, do NOT panic! 
 

3. Complete all problems in the actual test. Bonus problems are, of course, optional. Bonus 
problems will only be counted if all other problems are attempted.  
 

4. Show ALL your work to receive full credit. You will get 0 credit for simply writing down the 
answers (that’s not really possible in this test anyway…) 
 

5. Write neatly so that I am able to follow your sequence of steps.  
 

6. Read through the exam and complete the problems that are easy (for you) first! 
 

7. No scrap paper, calculators, notes or other outside aids allowed—including divine intervention, 
telepathy, knowledge osmosis, the smart kid that may be sitting beside you or that friend you 
might be thinking of texting.  
 

8. In fact, cell phones should be out of sight! 
 

9. Use the correct notation and write what you mean! 𝑥2 and 𝑥2 are not the same thing, for 
example, and I will grade accordingly. 
 

10. Remember: if you mess up on a definition in a problem, you will get a zero for that problem. 
Use the definitions from class. If you want to use another, you must first prove it is equivalent to 
the class’ definition. 
 

11. Other than that, have fun and good luck! 
 

May the force be with you. But you can’t ask it to help you with your test. 

 



1. Solutions will vary; this is one possible way to complete this test. 

(a) (10 points) Let 𝒙, 𝒚 ∈ ℤ. Prove that (𝒙 + 𝒚)𝟐 is even if and only if 𝒙 and 𝒚 are of the same parity.  
 
𝑃𝑓: (⟹): Assume 𝑥 and 𝑦 are of opposite parity. WLOG, assume 𝑥 is even and 𝑦 is odd. Since 
the sum of an even integer and an odd integer is odd, we then have that 𝑥 + 𝑦 is odd, that is, 
𝑥 + 𝑦 = 2𝑚 + 1 for some 𝑚 ∈ ℤ. And so (𝑥 + 𝑦)2 = (2𝑚 + 1)2 = 2(2𝑚2 + 2𝑚) + 1, which is 
odd, and so the contrapositive holds.  
 
(⟸): For the converse, assume 𝑥 and 𝑦 have the same parity. Then either 𝑥 and 𝑦 are both even 
or 𝑥 and 𝑦 are both odd. In either case, their sum is even. That is, 𝑥 + 𝑦 = 2𝑘 for some 𝑘 ∈ ℤ, 
and so (𝑥 + 𝑦)2 = (2𝑘)2 = 2(2𝑘2), which is even. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) (10 points) Let 𝒙 ∈ ℤ. Prove that 𝟑𝒙 + 𝟐 is odd if and only if 𝟓𝒙 + 𝟏𝟏 is even. 
 
𝑃𝑓: (⟹): Assume 3𝑥 + 2 is odd. Then we may write 3𝑥 + 2 = 2𝑘 + 1 for some integer 𝑘. 
Adding 2𝑥 + 9 to both sides, we get 5𝑥 + 11 = 2𝑘 + 1 + 2𝑥 + 9 = 2(𝑘 + 𝑥 + 5), which is 
even. 
 
(⟸): Assume 5𝑥 + 11 is even. Then 5𝑥 + 11 = 2𝑘 for 𝑘 ∈ ℤ. Then, adding −2𝑥 − 9 to both 
sides, we get 3𝑥 + 2 = 2𝑘 − 2𝑥 − 9 = 2(𝑘 − 𝑥 − 5) + 1, which is odd.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. (a) (10 points) Prove that 𝒏! > 𝟐𝒏 for every integer 𝒏 ≥ 𝟒. 
 

𝑃𝑓: Let 𝑃(𝑛): 𝑛! > 2𝑛 for every integer 𝑛 ≥ 4. We proceed with induction on 𝑛.  
 
For the base case: 4! = 24 > 16 = 24. So 𝑃(4) holds.  
 
Assume that 𝑃(𝑘) holds for some 𝑘 ∈ ℕ. We show 𝑃(𝑘 + 1) holds.  
 
Since 𝑃(𝑘) holds, we have, 

𝑘! > 2𝑘 
⟹ (𝑘 + 1)! > (𝑘 + 1) ⋅ 2𝑘 

= 𝑘 ⋅ 2𝑘 + 2𝑘  
≥ 4 ⋅ 2𝑘 + 2𝑘 
> 2𝑘 + 2𝑘 
= 2 ⋅ 2𝑘 
= 2𝑘+1 

The above shows that (𝑘 + 1)! > 2𝑘+1, which is 𝑃(𝑘 + 1), and so the claim holds by induction. 
 
 
 
 
 
 
 

(b) For each 𝒏 ∈ ℕ, let 𝑷(𝒏): “𝒏𝟐 + 𝟓𝒏 + 𝟏 is an even integer.”  
(i) (6 points) Prove that 𝑷(𝒏) ⇒ 𝑷(𝒏 + 𝟏). 
 
𝑃𝑓: Assume that 𝑛2 + 5𝑛 + 1 = 2𝑘 for some integer 𝑘. Then we have that 
 

(𝑛 + 1)2 + 5(𝑛 + 1) + 1 = 𝑛2 + 2𝑛 + 1 + 5𝑛 + 5 + 1 
= (𝑛2 + 5𝑛 + 1) + 2𝑛 + 6 
= 2𝑘 + 2𝑛 + 6 
= 2(𝑘 + 𝑛 + 3) 

Which is even. Thus, 𝑃(𝑛 + 1) holds.  
 
 
 
 
 
(ii) (2 points) For which 𝒏 is 𝑷(𝒏) actually true? 
 
None!!! The expression 𝑛2 + 5𝑛 + 1 is ALWAYS odd. (To see this, if we assume 𝑛 is even, that is, 
𝑛 = 2𝑘 for an integer 𝑘, then 𝑛2 + 5𝑛 + 1 = 2(2𝑘2 + 5𝑘) + 1, which is odd. And if 𝑛 is odd, 
that is, 𝑛 = 2𝑘 + 1 for some integer 𝑘, then 𝑛2 + 5𝑛 + 1 = 2(2𝑘2 + 7𝑘 + 3) + 1; which, again, 
is odd. So there is no 𝑛 for which 𝑃(𝑛) is true!) 
 
 
 
(iii) (2 points) What is the moral of this exercise? 
 
The base case of an induction proof is important! (If one is not careful, one may have assumed 
from part b(i) that 𝑛2 + 5𝑛 + 1 is even for all 𝑛.) 



 

3. (20 points) Let 𝒂, 𝒃, 𝒄 ∈ ℤ. Prove that if 𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐, then 𝟑|𝒂𝒃.  
 
Hint: You may want to prove this lemma:  

Lemma: If 𝒄 ∈ ℤ, then 𝒄𝟐 ≡ 𝟎 (𝒎𝒐𝒅 𝟑) or 𝒄𝟐 ≡ 𝟏 (𝒎𝒐𝒅 𝟑).  
 
Two other results from the text may come in handy (you may use these without proving them):  
Result (1): If 𝟑|𝒙 or 𝟑|𝒚, then 𝟑|𝒙𝒚 

Result (2): If 𝟑 does not divide 𝒙, then 𝟑|(𝒙𝟐 − 𝟏).  
 
(If you choose to follow the hint, I will give you 10 points for proving the lemma and 10 points for 
finishing the proof of the main statement.) 
 
𝑃𝑓 𝑜𝑓 𝑙𝑒𝑚𝑚𝑎: Let 𝑐 ∈ ℤ. Then, by the division algorithm, we can have three cases:  

(i) 𝑐 ≡ 0(𝑚𝑜𝑑 3), (ii) 𝑐 ≡ 1(𝑚𝑜𝑑 3), or  (iii) 𝑐 ≡ 2(𝑚𝑜𝑑 3). 
 
In case (i): 𝑐 = 3𝑘 for some integer 𝑘. And so, 𝑐2 = 9𝑘2 = 3(3𝑘2) ≡ 0(𝑚𝑜𝑑 3). 
In case (ii): 𝑐 = 3𝑘 + 1 for some integer 𝑘. Then 𝑐2 = 9𝑘2 + 6𝑘 + 1 = 3(3𝑘2 + 2𝑘) + 1 ≡ 1(𝑚𝑜𝑑 3). 
In case (iii): 𝑐 = 3𝑘 + 2 for some integer 𝑘. So 𝑐2 = 9𝑘2 + 12𝑘 + 4 = 3(3𝑘2 + 4𝑘 + 1) + 1 ≡ 1(𝑚𝑜𝑑 3). 
 
So we see, in all cases, either 𝑐2 ≡ 0(𝑚𝑜𝑑 3) or 𝑐2 ≡ 1(𝑚𝑜𝑑 3). 
 
 
 
 
𝑃𝑓: Assume, for the sake of contradiction, that 𝑎2 + 𝑏2 = 𝑐2 but 3 ∤ 𝑎𝑏. Then, by the contrapositive 
of result (1), we have that 3 ∤ 𝑎 and 3 ∤ 𝑏. Result (2) then gives us that 3|(𝑎2 − 1) and 3|(𝑏2 − 1), 
that is, 𝑎2 − 1 = 3𝑘 and 𝑏2 − 1 = 3𝑙 for some integers 𝑘 and 𝑙. In other words, 𝑎2 = 3𝑘 + 1 and 
𝑏2 = 3𝑙 + 1. We then get that  

𝑐2 = 𝑎2 + 𝑏2 = 3𝑘 + 1 + 3𝑙 + 1 = 3(𝑘 + 𝑙) + 2 ≡ 2(𝑚𝑜𝑑 3) 
But this contradicts the lemma that was proven just above.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
4. Definition: Let 𝑆 ⊆ ℝ be nonempty and bounded above. Then we define the supremum of 𝑆, 

denoted 𝑠𝑢𝑝𝑆,  to be the least upper bound of 𝑆. That is, (1) 𝑠𝑢𝑝𝑆 ≥ 𝑠, ∀𝑠 ∈ 𝑆, and (2) if 𝑥 is 
another upper bound of 𝑆, then 𝑠𝑢𝑝𝑆 ≤ 𝑥.  

 
(a) (10 points) Prove that if 𝒔𝒖𝒑𝑺 ∈ 𝑺, then 𝒔𝒖𝒑𝑺 = 𝒎𝒂𝒙𝑺. 

 
𝑃𝑓: Assume 𝑠𝑢𝑝𝑆 ∈ 𝑆. Then part (1) of the definition says that 𝑠𝑢𝑝𝑆 ≥ 𝑠, ∀𝑠 ∈ 𝑆; and since 𝑠𝑢𝑝𝑆 ∈ 𝑆, 
we have an element in 𝑆 that is greater than or equal to all other elements in 𝑆. That is, 𝑠𝑢𝑝𝑆 fulfills 
the definition of what it means to be the maximum element of 𝑆. In other words, 𝑠𝑢𝑝𝑆 = 𝑚𝑎𝑥𝑆. 
 
 
A nicer problem to ask would be:  
 
Let 𝑆 ⊆ ℝ be nonempty and bounded above. Show that if 𝑆 has a maximum element, then it 
must be the 𝑠𝑢𝑝𝑟𝑒𝑚𝑢𝑚 of 𝑆. That is, 𝑠𝑢𝑝𝑆 = 𝑚𝑎𝑥𝑆. 
 
Try to prove this on your own.  

 
 
 
 
 
 
 
 
 

(b) Theorem: (Denseness of ℚ) If 𝑎, 𝑏 ∈ ℝ and 𝑎 < 𝑏, then there exists 𝑟 ∈ ℚ such that 𝑎 < 𝑟 < 𝑏.  
 
(10 points) Prove that for any 𝒂, 𝒃 ∈ ℝ, there are an infinite number of rational numbers 
strictly between 𝒂 and 𝒃. You may or may not use the denseness of ℚ theorem stated above. 
You also may or may not use induction here. 
 
𝑃𝑓: We will show that for any 𝑛 ∈ ℕ we can find a list of length 𝑛 of distinct rationals strictly 
between 𝑎 and 𝑏. Since |ℕ| = ∞, this would imply we can create an infinite list of rationals: 
𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛, … between 𝑎 and 𝑏. We proceed by induction on 𝑛.  
 
Base case: clearly this holds for 𝑛 = 1. Since, by the denseness of ℚ theorem, there exists some 
rational 𝑟1 such that 𝑎 < 𝑟1 < 𝑏.  
 
Assume our claim holds for 𝑘 ∈ ℕ. That is, we can find 𝑟1, 𝑟2, … , 𝑟𝑘 ∈ ℚ such that  
 

𝑎 < 𝑟𝑘 < 𝑟𝑘−1 < ⋯ < 𝑟2 < 𝑟1 < 𝑏 
 
Then, by the denseness of ℚ property again, since 𝑎, 𝑟𝑘 ∈ ℝ and 𝑎 < 𝑟𝑘, we can find 𝑟𝑘+1 ∈ ℚ 
such that  𝑎 < 𝑟𝑘+1 < 𝑟𝑘. But that means we have  
 

𝑎 < 𝑟𝑘+1 < 𝑟𝑘 < ⋯ < 𝑟1 < 𝑏 
 
So we have a list of length 𝑘 + 1 of distinct rationals strictly between 𝑎 and 𝑏.  
 

 



 

5. (10 points) (a) Prove: If 𝒓 be a real number such that 𝟎 < 𝒓 < 𝟏, then 
𝟏

𝒓(𝟏−𝒓)
≥ 𝟒. (You’re expected 

to be very technical here, and will be graded accordingly.)  
 
𝑃𝑓: Assume 0 < 𝑟 < 1. This means that 𝑟 > 0 and also 𝑟 < 1 ⟹ 1 − 𝑟 > 0. As the product of two 
positive real numbers is positive, the expression 𝑟(1 − 𝑟) > 0. This means that we can divide by 
𝑟(1 − 𝑟), and doing so would not affect the direction of an inequality.  
 
Now, since 𝑥2 ≥ 0 for any 𝑥 ∈ ℝ, we have that (2𝑟 − 1)2 ≥ 0. This means  

4𝑟2 − 4𝑟 + 1 ≥ 0 
⟹ 1 ≥ 4𝑟 − 4𝑟2 
⟹ 1 ≥ 4𝑟(1 − 𝑟) 

⟹
1

𝑟(1 − 𝑟)
≥ 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) (10 points) For sets 𝑨 and 𝑩, prove that 𝑨 = (𝑨 − 𝑩) ∪ (𝑨 ∩ 𝑩). 
 
𝑃𝑓: We show that 𝐴 ⊆ (𝐴 − 𝐵) ∪ (𝐴 ∩ 𝐵) and (𝐴 − 𝐵) ∪ (𝐴 ∩ 𝐵) ⊆ 𝐴. 
 
For the first inclusion: Assume 𝑥 ∈ 𝐴. Then we have two cases, either 𝑥 ∈ 𝐵 or 𝑥 ∉ 𝐵. If 𝑥 ∈ 𝐵, 
then we have 𝑥 ∈ 𝐴 ∩ 𝐵, which implies 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 − 𝐵). If 𝑥 ∉ 𝐵, then we have 𝑥 ∈ 𝐴 − 𝐵, 
and hence 𝑥 ∈ (𝐴 − 𝐵) ∪ (𝐴 ∩ 𝐵). In either case, 𝑥 ∈ 𝐴 ⟹ 𝑥 ∈ (𝐴 − 𝐵) ∪ (𝐴 ∩ 𝐵). 
 
For the second inclusion, assume that 𝑥 ∉ 𝐴. Then it is clear that 𝑥 ∉ 𝐴 ∩ 𝐵 and 𝑥 ∉ 𝐴 − 𝐵, since 
both of those sets require that 𝑥 ∈ 𝐴. Since 𝑥 is in none of these sets, it cannot be in any union of 
these sets. The reverse inclusion holds, therefore, by the contrapositive.  
 

 
 
  



Bonus Problems: 
 

1. (3 points) Let 𝒙 be a positive real number. Prove that 𝟏 +
𝟏

𝒙𝟒 ≥
𝟏

𝒙
+

𝟏

𝒙𝟑 

𝑃𝑓: Since 𝑥 > 0, we can divide by it. Furthermore, since (𝑥 − 1)2 ≥ 0 in general and 𝑥2 + 𝑥 + 1 > 0 
by our assumption, we have that (𝑥 − 1)2(𝑥2 + 𝑥 + 1) ≥ 0. But this means 𝑥4 − 𝑥3 − 𝑥 + 1 ≥ 0. In 
other words, 𝑥4 + 1 ≥ 𝑥3 + 𝑥. Dividing both sides by 𝑥4 gives the desired result. 
 

 
 
2. (2 points) Let 𝑨 be a set. Define a relation on 𝑨.  

 
Definition: A relation on 𝐴 is a subset of 𝐴 × 𝐴 (the Cartesian product of 𝐴 with itself). 

 
 
3. (5 points) Let 𝑹 be a relation on a set 𝑨. Define what it means for 𝑹 to be an equivalence relation 

on 𝑨? 
 
Definition: 𝑅 is called an equivalence relation iff 𝑅 is reflexive, symmetric, and transitive. 
 
𝑅 is reflexive means: (𝑎, 𝑎) ∈ 𝑅 for all 𝑎 ∈ 𝐴. 
𝑅 is symmetric means: if (𝑎, 𝑏) ∈ 𝑅, then (𝑏, 𝑎) ∈ 𝑅 for 𝑎, 𝑏 ∈ 𝐴. 
𝑅 is transitive means: if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅, then (𝑎, 𝑐) ∈ 𝑅 for 𝑎, 𝑏, 𝑐 ∈ 𝐴.  
 
 

4. (10 points) Define a relation 𝑹 on ℤ by 𝒂𝑹𝒃 iff 𝒂 ≡ 𝒃 (𝒎𝒐𝒅 𝟑). Show that 𝑹 is an equivalence 
relation and find its equivalence classes. 
 
𝑃𝑓: Assume 𝑎, 𝑏, 𝑐 ∈ ℤ. We show that 𝑅 has the requisite properties.  
 
Reflexivity: Since 3|(𝑎 − 𝑎) = 0, 𝑎 ≡ 𝑎 (𝑚𝑜𝑑 3), therefore (𝑎, 𝑎) ∈ 𝑅. 
 
Symmetry: Assume 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 3). Then 𝑎 = 𝑏 + 3𝑘 for some integer 𝑘. This means 𝑏 = 𝑎 + 3(−𝑘), 
and so 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛). Thus, if (𝑎, 𝑏) ∈ 𝑅, then (𝑏, 𝑎) ∈ 𝑅. 
 
Transitivity: Assume 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 3) and 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 3). Then 𝑎 − 𝑏 = 3𝑘 and 𝑏 − 𝑐 = 3𝑙 for some 
integers 𝑘, 𝑙. Adding these two equations, we get 𝑎 − 𝑐 = 3(𝑘 + 𝑙), so 𝑎 ≡ 𝑐 (𝑚𝑜𝑑 3). This means if 
(𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅, then (𝑎, 𝑐) ∈ 𝑅. 
 
Since 𝑅 is reflexive, symmetric and transitive, it is an equivalence relation.  
 
The Equivalence Classes of 𝑅: 
 
For each 𝑎 ∈ ℤ, let [𝑎] denote its equivalence class. That is, [𝑎] = {𝑏 ∈ ℤ | 𝑎𝑅𝑏} = {𝑏 ∈ ℤ |𝑎 ≡ 𝑏 (𝑚𝑜𝑑 3)}. 
 

[0] = {0, ±3, ±6, ±9, … } = {3𝑘 | 𝑘 ∈ ℤ} 
[1] = {1, −2, 4, −5, 7, −8, 10, … } = {3𝑘 + 1 | 𝑘 ∈ ℤ} 
[2] = {2, −1, 5, −4, 8, −7, 11, … } = {3𝑘 + 2 |𝑘 ∈ ℤ} 

 
Since these sets partition ℤ, these are all the equivalence classes of 𝑅. It has three.  

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


