
Math 308 -  Summer 2018 

Selected Solutions to HW set 6 

Problems 2, 8, 20, 22, and 44 were graded for HW 6. 

Disclaimer: If you have questions about any of the other problems, see me in office hours. Consider all 

problems important, not just the ones I provide solutions for. Also consider it important to do more than what 

is required for homework. Also note there are many ways to prove statements in general, so my proof might 

not look like yours, and that’s fine as long as yours is correct :p 

2. Prove that if 𝑨 is any well-ordered set of real numbers and 𝑩 is any non-empty subset of 𝑨, then 𝑩 is also 

well-ordered.  

𝑃𝑓: Assume to the contrary that 𝐵 is not well-ordered. Then there exists some nonempty subset 𝐶 ⊂ 𝐵 that 
does not have a least element. But since 𝐵 ⊆ 𝐴, we also have that 𝐶 ⊂ 𝐴. But that means 𝐴 contains a non-
empty subset that has no least element. This contradicts the fact that 𝐴 is well-ordered.   
 
 

8. Find a formula for 𝟏 + 𝟒 + 𝟕 +⋯+ (𝟑𝒏 − 𝟐) for positive integers 𝒏, and then verify your formula by 

mathematical induction. 

𝑃𝑓: There are many ways to come up with a conjecture here, but let’s use the “trick” we showed in class 

(which was also suggested in exercise 4 part (2) of this chapter).  

Let 𝑆 = 1 + 4 + 7 +⋯+ (3𝑛 − 2). Note that 𝑆 = (3𝑛 − 2) + (3𝑛 − 5) +⋯+ 7 + 4 + 1. Adding both these 

equations give 

2𝑆 = (3𝑛 − 1) + (3𝑛 − 1) +⋯+ (3𝑛 − 1)⏟                        
𝑛 𝑡𝑖𝑚𝑒𝑠

= 𝑛(3𝑛 − 1) 

⟹ 𝑆 =
𝑛(3𝑛 − 1)

2
 

Let us conjecture this is the sum and prove it by mathematical induction. 

Claim: Let 𝑃(𝑛): 1 + 4 + 7 +⋯+ (3𝑛 − 2) =
𝑛(3𝑛−1)

2
 , for all 𝑛 ∈ ℕ. 

𝑃𝑓: We employ mathematical induction. 

Since 𝑃(1): 1 =
1(3(1)−1)

2
 is true, the base case holds.  

Assume 𝑃(𝑘) holds for some 𝑘 ∈ ℕ. Then this means 

1 + 4 + 7 +⋯+ (3𝑘 − 2) =
𝑘(3𝑘−1)

2
  

⟹ 1+ 4 + 7 +⋯+ (3𝑘 − 2) + (3(𝑘 + 1) − 2) =
𝑘(3𝑘−1)

2
+ (3(𝑘 + 1) − 2)  

=
𝑘(3𝑘−1)

2
+ (3𝑘 + 1)  

=
𝑘(3𝑘−1)+6𝑘+2

2
  

=
(𝑘+1)(3𝑘+2)

2
  



Which is to say 1 + 4 + 7 +⋯+ (3𝑘 − 2) + (3(𝑘 + 1) − 2) =
(𝑘+1)(3(𝑘+1)−1)

2
. 

Which is the statement 𝑃(𝑘 + 1). 

Since 𝑃(𝑘) ⟹ 𝑃(𝑘 + 1), the claim holds by induction.  

 

20. (a) Use mathematical induction to prove that every finite nonempty set of real numbers has a largest 

element. 

(b) Use (a) to prove that every finite nonempty set of real numbers has a smallest element.   

(a) 𝑃𝑓: Let 𝑃(𝑛): If 𝐴 ⊆ ℝ, 𝐴 ≠ ∅, and |𝐴| = 𝑛 for 𝑛 ∈ ℕ, then 𝐴 has a largest element. 

Since 𝐴 has a finite number of elements, we may think of 𝐴 as the set {𝑎1, 𝑎2, … , 𝑎𝑛}, where the 𝑎𝑖 ∈ ℝ are 

the members of 𝐴. 

For the base case, clearly 𝑃(1) holds, since if 𝐴 = {𝑎1}, we have 𝑎1 ≥ 𝑎 ∀𝑎 ∈ 𝐴, since 𝑎1 ≥ 𝑎1. 

Let us assume that any set with 𝑘 elements, for some 𝑘 ∈ ℕ, has a largest element. Consider the set 

𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑘} ∪ {𝑎𝑘+1}, where 𝑎𝑘+1 ≠ 𝑎 ∀𝑎 ∈ 𝐴, then this is a set with 𝑘 + 1 elements. We show that 

this has a largest element, assuming that every set of size 𝑘 has a largest. 

By our hypothesis, the set {𝑎1, 𝑎2, … , 𝑎𝑘} has a largest element, call it 𝑏. Then we have two cases: 𝑏 ≥ 𝑎𝑘+1 or 

𝑏 < 𝑎𝑘+1. In the first case, 𝑏 is the largest element of 𝐴. In the second case, 𝑎𝑘+1 is the largest element of 𝐴. 

In either case, 𝐴 has a largest element, and the claim holds by induction.  

 

(b) 𝑃𝑓: Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} be any nonempty set of 𝑛 real numbers. We will show 𝐴 has a least element. 

Consider the set 𝐵 = {−𝑥 | 𝑥 ∈ 𝐴}. Since 𝐵 is also a finite set of 𝑛 real numbers, it has a largest element by 

the above result. Call the largest element – 𝑎; then −𝑎 ≥ −𝑏, for all −𝑏 ∈ 𝐵. But that means that 𝑎 ≤ 𝑏 for all 

𝑏 ∈ 𝐴. In other words, the set 𝐴 has a least element.   

 

22. Prove that 𝟑𝒏 > 𝒏𝟐 for every positive integer 𝒏.   

𝑃𝑓: Let 𝑃(𝑛): 3𝑛 > 𝑛2 for all 𝑛 ∈ ℕ. 

Base case: 𝑃(1) is true, since 31 = 3 > 1 = 12. 

Inductive hypothesis: Assume that 3𝑘 > 𝑘2 for some particular 𝑘 ∈ ℕ, that is, 𝑃(𝑘) holds for some 𝑘. 

We show 𝑃(𝑘 + 1) holds.  

Now, 𝑃(𝑘 + 1) is the statement that 3𝑘+1 > (𝑘 + 1)2, and note that this inequality holds if 𝑘 = 1. So let us 

assume 𝑘 ≥ 2 to prove for the remaining cases.  

Consider, 

3𝑘+1 = 3 ⋅ 3𝑘  

> 3 ⋅ 𝑘2 by the inductive hypothesis. 

= 𝑘2 + 𝑘2 + 𝑘2  



= 𝑘2 + 𝑘 ⋅ 𝑘 + 𝑘2  

≥ 𝑘2 + 2𝑘 + 4 since 𝑘 ≥ 2 

> 𝑘2 + 2𝑘 + 1  

= (𝑘 + 1)2  

And thus we have shown that 3𝑘+1 > (𝑘 + 1)2 for 𝑘 ≥ 2, and so 𝑃(𝑘 + 1) holds in all cases. Applying the 

conclusion of the mathematical induction principle gives the desired result.  

 

44. Consider the sequence 𝑭𝟏, 𝑭𝟐, 𝑭𝟑, … , 𝒘𝒉𝒆𝒓𝒆  

𝑭𝟏 = 𝟏, 𝑭𝟐 = 𝟏, 𝑭𝟑 = 𝟐, 𝑭𝟒 = 𝟑, 𝑭𝟓 = 𝟓, 𝑭𝟔 = 𝟖. 

The terms of this sequence are called Fibonacci numbers.  

(a) Define the sequence of Fibonacci numbers by means of a recurrence relation. 

(b) Prove that 𝟐|𝑭𝒏 if and only if 𝟑|𝒏. 

(a) The infinite sequence of Fibonacci numbers can be defined recursively by 

𝐹1 = 1,𝐹2 = 1, and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 3. 

Since, after the first two terms, each new term can be obtained by summing the previous two terms. 

 

 (b) Let 𝑃(𝑛): 2|𝐹𝑛 if and only if 3|𝑛, for 𝑛 ∈ ℕ. 

𝑃𝑓: For base cases, statements 𝑃(1) and 𝑃(2) clearly hold. The implications, in both directions, hold 

true vacuously for the cases when 𝑛 = 1 and 𝑛 = 2. 

Assume 𝑃(𝑖) holds for all values 𝑖 ≥ 1 up to some 𝑘 ∈ ℕ (we may assume, by the above 𝑘 ≥ 2, and so 

any integer of value 𝑘 − 1 or larger is a member of ℕ). We show that 𝑃(𝑘 + 1) holds.  

We need to show (⟹): if 2|𝐹𝑘+1, then 3|(𝑘 + 1), and, (⟸): if 3|(𝑘 + 1), then 2|𝐹𝑘+1.  

(⟹): For the first implication, assume 3 ∤ (𝑘 + 1), then either 𝑘 + 1 = 3𝑚 + 1 or 𝑘 + 1 = 3𝑚 + 2 for some 

integer 𝑚. In the first case, 3|𝑘 and so 2|𝐹𝑘 by our inductive hypothesis. And since 3|𝑘, we have 3 ∤ (𝑘 − 1), 

and so 2 ∤ 𝐹𝑘−1, again by our inductive hypothesis. This means 𝐹𝑘 is even, while 𝐹𝑘−1 is odd. Therefore, 

𝐹𝑘+1 = 𝐹𝑘 + 𝐹𝑘−1 is odd, since it is the sum of an even number and an odd number. But that means 2 ∤ 𝐹𝑘+1. 

In the case that 𝑘 + 1 = 3𝑚 + 2, we have that 3 ∤ 𝑘, but it does divide 𝑘 − 1. By our inductive hypothesis, 

this means 2 ∤ 𝐹𝑘 but 2|𝐹𝑘−1. This means 𝐹𝑘 is odd, while 𝐹𝑘−1 is even, and so 𝐹𝑘+1 = 𝐹𝑘 + 𝐹𝑘−1 is odd, and 

hence 2 ∤ 𝐹𝑘+1. Thus, in either case, the contrapositive holds.  

(⟸): Now let us consider the second implication. Assume 3|(𝑘 + 1). Then 𝑘 + 1 = 3𝑚 for some integer 

𝑚. But this means that 𝑘 = 3𝑚 − 1 = 3(𝑚 − 1) + 2 and 𝑘 − 1 = 3𝑚 − 2 = 3(𝑚 − 1) + 1, so we have 

that 3 ∤ 𝑘 and 3 ∤ (𝑘 − 1). Then, by our inductive hypothesis, 2 ∤ 𝐹𝑘 and 2 ∤ 𝐹𝑘−1. This means 𝐹𝑘 and 

𝐹𝑘−1 are odd, and so 𝐹𝑘+1 = 𝐹𝑘 + 𝐹𝑘−1 is even. This means 2|𝐹𝑘+1, and so the second implication holds 

by direct proof. 

This establishes 𝑃(𝑘 + 1). 

  


