Math 308 - Summer 2018

Selected Solutions to HW set 2

Problems 16, 22, and 46 were graded for HW 2.
Disclaimer: If you have questions about any of the other problems, see me in office hours. Consider all problems important, not just the ones I provide solutions for. Also consider it important to do more than what is required for homework.
16. For sets $A=\{1,2, \ldots, 10\}$ and $B=\{2,4,6,9,12,25\}$, consider the statements

$$
P: A \subseteq B . \quad Q:|A-B|=6
$$

Determine which of the following statements are true.
First note that A is NOT a subset of B, since, for instance, $1 \in A$ but $1 \notin B$. So the statement P is false.
Also, $A-B=\{1,3,5,7,8,10\} \Rightarrow|A-B|=6$. So statement Q is true.
All the following answers can be verified by looking at the appropriate row of a truth table involving the statements, but we will neglect to show the truth tables here. Our choice is justified by he statements in the answers.
(a) $P \vee Q$

This is TRUE since Q is true.
(b) $P \vee(\sim Q)$

This is FALSE since both P and $\sim Q$ are false.
(c) $P \wedge Q$

This is FALSE since P is false.
(d) $(\sim P) \wedge Q$

This is TRUE since both $\sim P$ and Q are true.
(e) $(\sim P) \vee(\sim Q)$

This is TRUE since $\sim P$ is true.
22. Consider the statements:

$$
P: \sqrt{2} \text { is rational. } \quad Q: \frac{2}{3} \text { is rational. } \quad R: \sqrt{3} \text { is rational. }
$$

Write each of the following in words and indicate whether the statement is true or false.

Note that P is false, Q is true and R is false.
(a) $(P \wedge Q) \Rightarrow R$

In words: If $\sqrt{2}$ is rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational.
This is TRUE since $P \wedge Q$ is false ($P \wedge Q$ is false since P is false).
(b) $(P \wedge Q) \Rightarrow(\sim R)$

In words: If $\sqrt{2}$ is rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is not rational.
This is TRUE for exactly the same reason as in part (a).
(c) $((\sim P) \wedge Q) \Rightarrow R$

In words: If $\sqrt{2}$ is not rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational.
This is FALSE since $\sim P$ and Q are true and hence $((\sim P) \wedge Q)$ is true. However, R is false; and so we have a true statement implying a false statement. The implication is hence false.
(d) $(P \vee Q) \Rightarrow(\sim R)$

In words: If $\sqrt{2}$ is rational or $\frac{2}{3}$ is rational, then $\sqrt{3}$ is not rational.
This is TRUE since Q is true makes $P \vee Q$ true. Also, since $\sim R$ is true, we have a true statement implying a true statement. Hence, the implication is true.
46. For statements P and Q, show that $P \Rightarrow(P \vee Q)$ is a tautology.

The following truth table shows that $P \Rightarrow(P \vee Q)$ is a tautology. This is indicated by the fact that the statement has true (T) values in every instance.

P	Q	$P \vee Q$	$P \Rightarrow(P \vee Q)$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

