Math 308 - Summer 2018

Selected Solutions to HW set 2

Problems 16, 22, and 46 were graded for HW 2.

Disclaimer: If you have questions about any of the other problems, see me in office hours. Consider all problems important, not just the ones I provide solutions for. Also consider it important to do *more* than what is required for homework.

16. For sets $A = \{1, 2, ..., 10\}$ and $B = \{2, 4, 6, 9, 12, 25\}$, consider the statements

$$P: A \subseteq B. \qquad Q: |A - B| = 6.$$

Determine which of the following statements are true.

First note that A is NOT a subset of B, since, for instance, $1 \in A$ but $1 \notin B$. So the statement P is false.

Also, $A - B = \{1, 3, 5, 7, 8, 10\} \implies |A - B| = 6$. So statement Q is true.

All the following answers can be verified by looking at the appropriate row of a truth table involving the statements, but we will neglect to show the truth tables here. Our choice is justified by he statements in the answers.

- (a) $P \lor Q$ This is TRUE since Q is true.
- (b) P ∨ (~Q)
 This is FALSE since both P and ~Q are false.
- (c) $P \land Q$ This is FALSE since P is false.
- (d) (~P) ∧ Q
 This is TRUE since both ~P and Q are true.
- (e) $(\sim P) \lor (\sim Q)$ This is TRUE since $\sim P$ is true.
- 22. Consider the statements:

P: $\sqrt{2}$ is rational. $Q:\frac{2}{3}$ is rational. $R:\sqrt{3}$ is rational. Write each of the following in words and indicate whether the statement is true or false.

Note that *P* is false, *Q* is true and *R* is false.

(a) $(P \land Q) \Rightarrow R$ In words: If $\sqrt{2}$ is rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational. This is TRUE since $P \land Q$ is false $(P \land Q)$ is false since P is false). (b) $(P \land Q) \Rightarrow (\sim R)$

In words: If $\sqrt{2}$ is rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is not rational. This is TRUE for exactly the same reason as in part (a).

(c) $((\sim P) \land Q) \Rightarrow R$

In words: If $\sqrt{2}$ is not rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational. This is FALSE since $\sim P$ and Q are true and hence $((\sim P) \land Q)$ is true. However, R is false; and so we have a true statement implying a false statement. The implication is hence false.

(d) $(P \lor Q) \Rightarrow (\sim R)$

In words: If $\sqrt{2}$ is rational or $\frac{2}{3}$ is rational, then $\sqrt{3}$ is not rational.

This is TRUE since Q is true makes $P \lor Q$ true. Also, since $\sim R$ is true, we have a true statement implying a true statement. Hence, the implication is true.

46. For statements *P* and *Q*, show that $P \Rightarrow (P \lor Q)$ is a tautology.

The following truth table shows that $P \Rightarrow (P \lor Q)$ is a tautology. This is indicated by the fact that the statement has true (T) values in every instance.

Р	Q	$P \lor Q$	$P \Rightarrow (P \lor Q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	Т