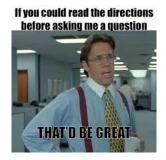
Math 212 RS2 Test 2

Quarantine, day 42.

Name: _

Note that both sides of each page may have printed material.



Instructions:

- 1. Read the instructions.
- 2. Panic!!! Kidding, don't panic! I repeat, do NOT panic!
- 3. Complete all problems in the actual test. Bonus problems are, of course, optional, and will only be counted if all other problems are attempted.
- 4. You have 90 minutes to complete the test.
- 5. Show ALL your work to receive full credit. You will get 0 credit for simply writing down the answers (unless it's a case of fill in the blank or state a definition, etc.)
- 6. Write neatly so that I am able to follow your sequence of steps and box, or otherwise indicate, your answers. Solutions with no indicated answer or several contradictory answers will be considered incorrect.
- 7. Read through the exam and complete the problems that are easy (for you) first!
- 8. You are NOT allowed to use notes, calculators, or other aids—including, but not limited to, divine intervention/inspiration, the internet, telepathy, knowledge osmosis, the smart kid that may be sitting beside you or that friend you might be thinking of texting.
- 9. In fact, cell phones should be out of sight! If you are caught with a cellphone you will be asked to leave the exam and you'll be given a zero. That goes for smart watches too!
- 10. Use the correct notation and write what you mean! x^2 and x^2 are not the same thing, for example, and I will grade accordingly.

student: yo jhevon you gonna curve our grades ??

jhevon:

1. (a) (4 points) Convert (x, y) = (-4, 4) to polar coordinates (r, θ)

(b) (4 points) Convert $(r, \theta) = \left(-2, \frac{2\pi}{3}\right)$ to rectangular coordinates (x, y)

(c) (4 points) Describe the following region in 3-space (including its boundary) using polar coordinate inequalities with an inequality for z. Include a sketch. The region in the first octant, above the paraboloid $z = x^2 + y^2$ and below the plane z = 4.

2. Consider the curve *C* given parametrically by $x = 1 + \sqrt{t}$, $y = e^{t^2}$, $0 < t < \infty$. (a) (3 points) Compute $\frac{dy}{dx}$

(b) (6 points) Find an equation for the tangent line to C at t = 1.

(c) (3 points) Set up, but do not compute, an integral to find the arc length of the part of C on the interval $0 \le t \le 1$.

3. (5 points each) Draw rough sketches of the following.

(a)
$$y^2 - x^2 = 1$$
 (b) $z = 1 - \sqrt{x^2 + y^2}$

(c)
$$z = x^2 - y^2$$
 (d) $x^2 + y^2 + \frac{z^2}{9} = 1$

- 4. (5 points each)
 - (a) Find the equation of the plane through the point (5,3,5) that is orthogonal to the vector $2\vec{i} + 3\vec{j} \vec{k}$.

(b) Find the equation of the line through (-6,2,3) that is parallel to the line x = 3 + 2t, y = 1 + t, z = 1 - t.

(c) What is the angle between the vectors < -1, -1, 2 >and < 3, 1, 1 >.

5. (6 points) Find the perpendicular distance from the point (0,2,3) to the line x = 3 + 2t, y = 1 + t, z = -1 + 2t.

6. (5 points each) Determine whether or not the following limits exist, justify your claim.

(a)
$$\lim_{(x,y)\to(2,2)}\frac{x-y}{x^4-y^4}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(xy)}{xy}$$

(c)
$$\lim_{(x,y,z)\to(0,0,0)}\frac{xy+yz}{x^2+y^2+z^2}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

- 7. (5 points each) Find the indicated partial derivatives:
 - (a) f_{xyy} given that $f(x, y) = x^y$

(b)
$$\frac{\partial^3 V}{\partial r \partial s \partial t}$$
 given that $V = \ln(r + s^2 + t^3)$

(c)
$$f_y\left(1,\frac{1}{2}\right)$$
 given that $f(x,y) = y\sin^{-1}(xy)$

Bonus: Bonus problems will only be counted if all non-bonus problems are attempted.

- 1. (3 points each) Let $\vec{a} = < -1, -1, 2 > \text{ and } \vec{b} = < 2, 2, -1 >$.
 - (a) Compute $\vec{a} \times \vec{b}$.

(b) Find the area of the parallelogram formed by \vec{a} and \vec{b} .

(c) Find the smallest angle between \vec{a} and \vec{b} . You may leave your answer in terms of an inverse trig function.

2. (3 points) Sketch the surface $f(x, y) = \ln y$

3. (4 points) Find and sketch the domain of $f(x, y) = \frac{\sqrt{x - y^2}}{1 - y^2}$

4. (4 points) Sketch a contour map of $f(x, y) = 9x^2 + y^2$ showing several level curves.

