Math 212 Mock Test 2

Quarantine, day 42.

Name:

Note that both sides of each page may have printed material.

If you could read the directions before asking me a question

Instructions:

- 1. Read the instructions.
- 2. Panic!!! Kidding, don't panic! I repeat, do NOT panic!
- 3. Complete all problems in the actual test. Bonus problems are, of course, optional, and will only be counted if all other problems are attempted.
- 4. You have 90 minutes to complete the test.
- 5. Show ALL your work to receive full credit. You will get 0 credit for simply writing down the answers (unless it's a case of fill in the blank or state a definition, etc.)
- 6. Write neatly so that I am able to follow your sequence of steps and box, or otherwise indicate, your answers. Solutions with no indicated answer or several contradictory answers will be considered incorrect.
- 7. Read through the exam and complete the problems that are easy (for you) first!
- 8. You are NOT allowed to use notes, calculators, or other aids—including, but not limited to, divine intervention/inspiration, the internet, telepathy, knowledge osmosis, the smart kid that may be sitting beside you or that friend you might be thinking of texting.
- 9. In fact, cell phones should be out of sight! If you are caught with a cellphone you will be asked to leave the exam and you'll be given a zero. That goes for smart watches too!
- 10. Use the correct notation and write what you mean! x^2 and x^2 are not the same thing, for example, and I will grade accordingly.

1. (a) (4 points) Convert $(x, y) = (\sqrt{3}, -1)$ to polar coordinates (r, θ)

(b) (4 points) Convert $(r, \theta) = \left(-2, \frac{11\pi}{6}\right)$ to rectangular coordinates (x, y)

(c) (4 points) Describe the region $1 \le x^2 + y^2 \le 16$, $x \le 0, y \ge 0$ using polar coordinate inequalities.

- 2. Consider the curve *C* given parametrically by $x = 3t^3 5t$, $y = t^4 + 1$, $-\infty < t < \infty$.
 - (a) (3 points) Compute $\frac{dy}{dx}$
 - (b) (6 points) Find an equation for the tangent line to C at t = 1.
 - (c) (3 points) Set up, but do not compute, an integral to find the arc length of the part of C on the interval $0 \le t \le 1$.
- 3. (5 points each) Draw rough sketches of the following.

(a)
$$z = x^2$$
 (b) $z = 1 - x^2 - y^2$

(c)
$$z = y^2 - x^2$$
 (d) $x + 3y + 2z = 6$

- 4. (5 points each) Find the equation of:
 - (a) The plane that passes through the point (1,5,1) and is perpendicular to the planes with equations 2x + y 2z = 2 and x + 3z = 4.
 - (b) The line of intersection of the planes x + y + z = 1 and x 2y + 3z = 1.
 - (c) What is the angle between the planes x + y + z = 1 and x 2y + 3z = 1.
- 5. (6 points) Find the point on the plane x + 2y z = 16 closest to the point (3,1,7).

6. (4 points each) Determine whether or not the following limits exist, justify your claim.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - x^2y^2 + y^4}{x^4 + y^4}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{3x^2 + y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + xy^2}{x^2 + y^2}$$

(d)
$$\lim_{(x,y)\to(0,0)}\frac{x^2}{x^2+y^2}$$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{xy\cos(x+y)}{x^2+y^2}$$

- 7. (5 points each) Find the indicated partial derivatives:
 - (a) f_{xyz} given that $f(x, y, z) = e^{xyz^2}$
 - (b) $\frac{\partial^6 u}{\partial x \partial y^2 \partial z^3}$ given that $u = x^a y^b z^c$
 - (c) $\frac{\partial z}{\partial y}$ given that $yz + x \ln y = z^2$

Bonus: Bonus problems will only be counted if all non-bonus problems are attempted.

- 1. (3 points each) Let $\vec{a} = <1, -1, 1 > \text{and } \vec{b} = <2, 2, 1 >.$
 - (a) Compute $\vec{a} \times \vec{b}$.
 - (b) Find the area of the parallelogram formed by \vec{a} and \vec{b} .
 - (c) Find the smallest angle between \vec{a} and \vec{b} . You may leave your answer in terms of an inverse trig function.
- 2. (3 points) Sketch the surface $f(x, y) = \sin x$
- 3. (4 points) Find and sketch the domain of $f(x, y) = \ln(9 x^2 9y^2)$
- 4. (4 points) Sketch a contour map of $f(x, y) = ye^x$ showing several level curves.