
Matlab for Math 203

Ethan Akin, Peter Brinkmann,
Edward Grossman and Raymond Hoobler

Department of Mathematics
City College of New York

November, 2007

Table of Contents

Introduction 1

Lab 01 Introduction to Matlab 3

Lab 02 m-Files 8

Lab 03 Symbolic Manipulation and Anonymous Functions 15

Lab 04 Graphing Surfaces and Plotting Lines in Space 21

Lab 05 Curves in Space 26

Lab 06 Graphing Surfaces and Their Tangent Planes 28

Lab 07 Gradients and Max/Min Problems 31

Lab 08 Graphing Parametrized Surfaces 35

Lab 09 Multiple Integrals 40

Lab 10 Iteration and Taylor Series Approximation 45

Appendix A: Symbolic Expressions in Matlab 49

Appendix B: Publishing m-files to HTML 55

Matlab Review Sheet 59

Sample Lab Exam Questions 61

Index 64

1

Introduction

Matlab is a widely used software package with a lot of numerical and sym-
bolic power. The program uses arrays of numbers to do many things.

This booklet is intended to be an introduction to Matlab. Our intention
is to go through approximately one Lab per week with occasional pauses to
get caught up. For each lab there is work to be done in class, some follow-up
reading and some homework to be handed in the following week. The work
requires a computer equipped with Matlab and so you should allot some time
during the week (Mon-Thurs) when the Artino Lab is open. The Lab is being
used for these Math 203 classes on Friday and so is not available then. Any
computer equipped with Matlab (version 7) will do, provided that it includes
the Symbolic Toolbox which we will be using.

This set of notes is not as complete as a regular Matlab text would be.
It needs to be supplemented with notes that you take during in-class work
and from your use of the help command.

The labs are designed to introduce some of the graphic and calculus capa-
bilities of MATLAB.Since the lab period is only one hour, you should prepare
for it by reading ahead of time the material and problems to be covered. You
will be working in pairs at the computers, but you will be tested individually
at the end of the semester. So be sure to spend some of your time working at
the keyboard. In addition you will probably have to spend some time outside
of class working on the homework exercises. But by the end of the semester
you should have developed a reasonable facility with Matlab that you can
use in other courses.

Learning to use a software package like Matlab takes up a lot of time,
especially in the beginning. As with any new computer package, the learning
goes best if you can relax, play around and enjoy the pretty output on the
screen.

2

There are two manuals which you should be aware of, although we won’t
be using them. They do provide the details omitted from these notes.

A Guide to Matlab for Beginners and Experienced Users,
2nd Ed. by Brian R. Hunt, Ronald L. Lipsman and Jonathan M. Rosenberg,
(Cambridge University Press, 2006) is a well-written text which, as the title
suggests, starts you out at the beginning and then proceeds on to material
beyond what we will be using. It is a very nice book, but it is not cheap
(about $ 50).

Mastering Matlab 7 by Duane C. Hanselman and Bruce L. Littlefield
(Prentice Hall, 2004) is comprehensive, but still readable, also expensive
(about $ 70, but cheaper at Amazon).

In addition, there is a free site which is up-to-date and very helpful:
www.utexas.edu/its/rc/tutorials/matlab/.

Finally, in the Matlab Help window, accessed under Help on the
toolbar, there is a tab for Demos. Clicking on the folder Matlab you
will see a list of many helpful illustrated documents and videos.

Warning: Sometimes you will want to interrupt a calculation. You may
have made a mistake and are hung up in a loop, or perhaps a calculation is
just taking too long. It is important to know that CTRL+C (that is, hold
down the button labeled Control or Ctrl, and press c)is the equivalent of
(and is more effective than) screaming “Stop” at the screen.

3

Lab 1: Introduction to Matlab

Matlab Objects and Operations: number arrays: vectors and matrices,
arithmetic of arrays and operations on arrays, anonymous and built-in
functions, pi (but not e), Edit menus, colors and line styles

Matlab Commands: linspace, colon operator (:), semicolon (;),
size, length, transpose(’),
diff, sum, prod, max, min,
plot, hold on, hold off, hold, figure, help,
(optional: polar)

The Mat in Matlab stands for matrix. A matrix is a rectangular array of
numbers. Manipulating such arrays is a central theme in Matlab.

Work in class: Try out some manipulations with arrays:

a = [1 3 0 -1 pi]

b = [3:7 a]

b = [3:7; a]

b = b’

b = b’

c = 3*a + 100

d = a.^3

e = linspace(0,1,5)

f = [0:.2:1]

g = a.*e./(1+e)

h = [a d c]

a(4)

b(1,3)

b(5)

size(a)

size(b)

length(e)

length(f)

k = h(1:2:length(h)-1)

m = max(k)

n = sum(a)

p = diff(h)

4

Beginning with two arrays a and b of the same size the sum is a + b. Mul-
tiplication by a scalar 17 or π is written 17*a or pi*a. You cannot omit
the * writing 3a as we often do in algebra because Matlab interprets
this as the name of some new object rather than three times the old
object a. For array multiplication, division and exponentiation, e.g.
a.*b, a./b and a.^3, you must include the period ’.’. This is called
the vectorized expression.

We will later make use of the fact that the position of an entry of a
matrix b can be specified in either of two ways: b(i, j) is the entry
in row i and column j. For b(N) you begin to count, down the first
column, the down the second, and so forth until you reach position N
and so N can be any integer from 1 to m times n.

Drawing pictures with Matlab, using its graphics, will be the most impor-
tant application for us. For example, the response to the command
plot(x,y), applied to a pair of vectors of the same length, consists
essentially of three steps:

1. Pair off the two number arrays to get a list of pairs of numbers.

2. Plot the points whose coordinates are on the list.

3. Connect the successive dots with line segments.

A useful test of your understanding is to plot the line segment which
connects the points with coordinates (2, 3) and (5, 0).

Observe how the arrow up key lets you repeat a command which you
earlier executed without typing the whole thing out again. As you
keep hitting the arrow up key the command line scrolls back through
the previously typed commands. If you type a letter or two first, then
it scrolls back only through the earlier commands which began with
the same few letters.

Work in class: Over the interval [0, π] we graph the functions f(x) = π sin(x
2
)

and g(x) = x2

π
on the same figure by using the following commands:

x = linspace(0, pi);

y1 = pi * sin(x/2);

y2 = x.^2 / pi;

5

plot(x, y1, x, y2)

figure

plot(x, y1)

hold on

plot(x, y2)

Observe that the results on the two figures are (almost)the same. When two
graphs are plotted at once on the same figure, as in plot(x,y1,x,y2),
two different colors are automatically used. You can choose the col-
ors and line styles, by writing, for example, plot(x,y1,x,y2,’r’) or
plot(x,y1,’:g’,x,y2,’-.’). The commands for colors, line styles
and point markers (which are used to label individual points) are listed
in the following table (see also help plot).

Line style Symbol Point marker Symbol Color Symbol
solid(default) - plus + red r

dashed - - circle o green g
dotted : asterisk * blue b

dash-dot -. point . cyan c
cross x magenta m

square s yellow y
diamond d black k

up triangle ∧ white w
down triangle v
right triangle >
left triangle <
pentagram p
hexagram h

Notice that you use single quote marks to call for these. Both the left and
right quote marks are typed using ’ next to the Enter key.

In the above program we used one of the built-in functions, sin(x).
Also built in are cos(x) and tan(x). Others are the square root func-
tion sqrt(x) and the exponential function ex which is written exp(x).
The natural logarithm function is log(x). The common, base 10, log
is log10(x). These functions are vectorized, meaning that you can
substitute either a single number or an array.

6

You can build your own functions as anonymous functions :

Work in class: Try the following code:

f = @(x,y) x^2 + 3*x*y

a = [0:3]

b = [3:6]

c = f(a,b)

Oops. What was the error and how do you fix it?

Assignments: Read from the screen the Matlab responses to help length,
help size, help linspace and help plot. Similarly use help to
understand the commands max, min, sum, prod and diff.

In the Lab, during the week: Do the following exercises.

1. For the function f(x) = (1+x)/(1+x2), define an anonymous func-
tion. Then do two plots. For the coarse plot use x = [-3:.5:3]

and y = f(x). Then let a = [x ; y]’ to get a table of values.
For the fine plot use x = linspace(-3,3). Don’t forget the semi-
colon ’;’ after the definitions of x and y this time.

2. With t = linspace(0,2*pi); let x = cos(t)./3; and y = sin(t);

Now look at plot(x, y). This is the plot of the parametric rep-
resentation of a curve. What curve is it?

Label your figures using the Figure Window Toolbar. Use Edit
/ Axes Properties / Labels. To show the grid use Edit / Axes
Properties / Scale and check the On box. To change the color or
line style of a graph, first move the cursor to the graph, click on
it and then use Edit / Current Object Properties / Style.

7

3. (Optional) Matlab draws nice polar graphs. Look at help polar.
Define: t = linspace(0,2*pi); then look at polar(t,sin(k*t))
for different values of k. For example, try k = 2, 4, 5. You can put
them all on the same figure by using hold on. It is then best
to use different colors, like polar(t,sin(4 * t),’r’) for red.
Notice that if you use hold on before you ask for the first polar
graph you get a different picture from what you get if you apply
hold on after your first polar graph (Try it). Can you explain
what is going on? Hint: Try using hold on alone and see what
you get.

Written homework to be handed in: You should do these without us-
ing the computer.

1. Assuming that

x = [0:.1:1]

y = linspace(0,1,10)

A = [0:5;-5:0;1,3,7,9,-10]

compute

(a) x(1), y(1), x(2), y(2)

(b) A(2, 3), A(5)

(c) length(x), length(y), size(x), size(A)

(d) 3*A.^2-1, A’

2. Is it true that pi*linspace(0,1,10) equals linspace(0,pi,10)?
Explain your answer.

8

Lab 2: m-Files

Matlab Objects and Operations: m-files (function m-files and scripts),
anonymous functions and function handles, logic operators, character
arrays (strings)

Matlab Commands: <, <=, >, >=, ==, ~=,
max, min, fzero, sort, unique,
pause, disp, num2str,
title, text, xlabel, ylabel, grid on,
(optional: echo on, echo off,comet)

For any computation or plot which requires more than two or three com-
mands it is helpful to use an m-file, also called a script. Then, during
the inevitable debugging, you don’t have to retype the whole list of
commands.

Work in class: We graph the function given by:

f(x) =

{
x2 + x if x < 1

sin(x) if x ≥ 1.

First, we define an anonymous function:

f = @(x)(x.^2+x).*(x<1) + sin(x).*(x>=1)

Recall from Lab 1 the pattern of an anonymous function. It begins with a
declaration of variables - in parentheses following the @ symbol. Then
the formula is written out. It is important to use the vectorized formula
- put in the dots.

This particular function has a branched definition with two cases.
These are handled by the relation operators. The sentence 2 ≤ 10
is written in Matlab 2 <= 10. This is a true sentence and so is inter-
preted by Matlab as the number 1. The false sentence 2 = 10, written
2 == 10 is interpreted as 0. Try out

a = [0 : 5]

a < 2

a == a.^2

9

Write the following as an m-file and save it as Lab2Class. You can cut-
and-paste (use Ctrl c and Ctrl v) rather than rewrite the formula for
f which we are now calling Jump . Each separate command will occur
on a numbered line. This is helpful because when (not if) Matlab
detects an error, it tells you the number of the line where the problem
is located. The gaps below (after echo on and Jump, for example)
are for your convenience to group the commands in readable chunks.
In typing, just ignore them and don’t bother skipping a line. The
computer doesn’t need that kind of help.

% This is a comment. It is ignored as an instruction.

clear all; close all

echo on

%First we define the anonymous function again.

Jump = @(x)(x.^2+x).*(x<1) + sin(x).*(x>=1)

x1 = linspace(-1, 1);

x2 = linspace(1, 2 * pi);

x = [x1, x2];

y1 = x1.^2-2;

y2 = sin(x2);

y = Jump(x);

plot(x1, y1)

hold on

plot(x2, y2)

grid on

pause

figure

plot(x, y)

hold on

grid on

pause

[M,i] = max(y);

disp([’maximum point is (’,num2str(x(i)),’,’, num2str(M),’)’])

pause

10

plot(x(i), M, ’rd’)

[m,j] = min(y);

disp([’minimum point is (’,num2str(x(j)),’,’, num2str(M),’)’])

pause

plot(x(j), m, ’gd’)

echo off

IMPORTANT: When you change an m-file, for example when you are de-
bugging it (correcting mistakes), always remember to hit save before
you run it again or else Matlab will run the old version.

Run the file Lab2Class, compare the two figures, and explain the differ-
ence. Why didn’t we use plot(x1,y1,x2,y2) in the first figure? Is
it true that y == [y1, y2] ? If so, could we have done without the
anonymous function in this case?

The third portion of the m-file computes the maximum and minimum
points on the graph of the function and puts red and green diamonds
at the points in the second figure. The instruction [M,i] = max(y)

yields two values. The first, labeled M , is the maximum value and the
second, labeled i, is the place where the maximum value is located (or
actually its first occurrence). Look at

a = pi * [-2, 7, 0, 1, 7, 2]

[M,i] = max(a)

For the x coordinate we use x(i), that is, the entry of the x vector with
the same index.

Notice that we used the color and point marker commands red (’r’)
and diamond (’d’) to mark the maximum point.

11

When you do an exercise like this there is some question how to do the la-
beling for a Figure. The command line labels, title, xlabel, ylabel,
grid on are used when you do the labeling as part of an m-file. It is
quicker, and easier, to use the Figure Window Toolbar as described in
Lab 1. Your script would then simply plot the functions. Then, after
running the script, add the labeling and tick marks. Be sure to use
different colors for the graphs in your display and different line styles
for your printed output. Experiment using the Toolbar so that you can
see how there commands work.

We used the commands echo on and echo off at the beginning and end of
the m-file. I recommend this, but it is not required. This has the effect
of showing the commands on the screen, in addition to their outputs,
when you run the m-file.

It is a good habit to begin every m-file with the commands clear all

and close all. This clears any previously assigned values of variables
and closes the current figures. If you don’t put in the initial close all

command and you run the program several times, to debug it for ex-
ample, then you may keep opening new figures that you have to close
by hand. Furthermore, it may be hard to figure out which figure is
which.

In an anonymous function the whole formula beginning with @ is called
a function handle so Jump is a function handle. Often you want
to refer to the function in an instruction and you use its handle. The
command fzero uses a function handle and a numerical guess to find
a root near the guess. Here are two different versions of the same
instruction.

a = fzero(@(x)(x.^2+x).*(x<1) + sin(x).*(x>=1),3)

a = fzero(Jump,3)

There is an alternative way to define a function using a special sort of
m-file called a function m-file. We won’t be using them and so you
needn’t worry about them. What you do need to know is that the
built-in functions, like cosine, written cos, are really function m-files
and the name, like cos, is not a function handle. You can convert it to
a function handle by attaching @. Compare

12

a = fzero(cos,1)

b = fzero(@cos,1)

While we won’t be using function m-files, I will mention the two advantages
of function m-files. They are useful when the formulae become very
long and complicated because like other m-files they are preserved in
memory until deleted, and so can be debugged. The maintenance in
memory is itself the other advantage. The anonymous functions are
only temporary. Try asking for fzero(f,3). Remember that f was the
original label we used for function handle now called Jump. The problem
is that the clear all instruction at the beginning of Lab2Class wiped
f out of memory.

Assignments: Read help max, help min and help fzero to see how these
commands work.

Below, you will find an m-file. It illustrates the effect of round-off error
when you try to compute Limx→∞(1 + 1

x
)x by substituting larger and

larger values. Type it out and run it to observe what happens. You
first rapidly approach the correct value: e = 2.718.... Then, suddenly,
the values jump around and finally collapse to 1. You should be able to
figure out why the computer gives the value 1 when you substitute very
large values of x. In the script the command comet is used instead of
plot. When used with hold on it generates the plot by moving from
point to point instead of showing the entire graph all at once. Notice
also the different labeling commands. Although you won’t be held
responsible for it, using comet is fun. However, you have to fix the axis
values in advance (here x goes from -1 to 70 and y goes from -1 to 8)
otherwise the axis will keep changing to fit the curve and this will look
confusing. Try it by running the m-file without the axis command. To
do this just put a % in front of the line. Notice, too, how the tick marks
are set. The gca command says “get current axes”.

clear all; close all

x = [0:.01:45, 45:.001:55, 55:.1:70];

y = (1 + 2.^(-x)).^(2.^x);

13

figure

axis([-1 70 -1 8]);

title(’y = (1+(1/x))^x’);

xlabel(’log_2(x)’);

ylabel(’y’);

set(gca, ’Xtick’, [0:10:70], ’Ytick’, [-1:.5:8]);

hold on

comet(x,y)

plot(x,y)

Lab Homework: This is to be submitted via Digital Dropbox or printed
out and handed in. Follow the instructions given in class.

1. Consider the function f with branched definition

f(x) =

{
x − 2x

3
2 0 ≤ x ≤ 1

x − 2 − cos(πx
2

) 1 < x ≤ 3.

Write an anonymous function for f and Plot the graph of the
function over the interval to allow you to estimate its zeros. Use
these estimates in the fzero command to find the positive zeros
(that is, the positive values of x at which the function equals zero).
On the plot of the function set the Xtick marks to include the zeros
and the integer values in the interval.

Remember that you should use the function handle of an anony-
mous function when you apply the command fzero. In setting
Xtick and Ytick the list has to consist of numbers in increasing
order. You can first list the values in any order, for example, a =
[0:3, zero1, zero2] and then use the sort command. That is, re-
place a by sort(a). The only difficulty left is that sort does not
eliminate repeats and no repeats are allowed are allowed in the
list. Use instead the command unique. Replacing a by unique(a)
sorts the elements of a and eliminates the repeats.

14

2. Plot the function given by f(x) = 2 sin(2x)− 3 cos(x
2
) over the in-

terval [0, 2π] using steps of length .001 (How?). Use the commands
max and min to estimate the maximum and minimum points. In-
clude the maximum and minimum points as tick marks on the
x-axis and the maximum and minimum values as tick marks on
the y-axis.

15

Lab 3: Symbolic Manipulation

and Anonymous Functions

Matlab Objects and Operations: symbolic arrays,
symbolic differentiation and integration,
obtaining an anonymous function from a symbolic formula,
numerical integration

Matlab Commands: syms, sym, double,
subs, diff, int, quad,
figure(gcf), input, whos,
(optional: char, eval, while ... end)

Work in class: One of the advantages of Matlab is the ease of plotting sev-
eral functions on the same graph. We illustrate this by plotting a func-
tion, its derivative and a tangent line (at a point whose x-coordinate
you choose) in the same figure by using the following script. In the
process we introduced the Symbolic Toolbox which is used to do
symbolic differentiation and integration.

clear all; close all

f = @(x) x.*cos(x.^2);

syms x

fxsym = diff(f(x))

fx = @(x) subs(fxsym)

pause

u = linspace(-.5, 3);

v = f(u);

w = fx(u);

whos

pause

plot(u, v)

grid on; hold on

pause

16

plot(u, w, ’g’)

pause

p = input(’x-value for tangent line point? ’)

q = f(p) + fx(p) * (u-p);

figure(gcf); plot(u, q, ’k’); plot(p, f(p), ’rd’)

pause

Fsym = int(f(x))

F = @(x) subs(Fsym)

disp([’The integral from 0 to 2 of f is F(2)-F(0) = ’,

num2str(F(2)-F(0))])

disp([’The numerical approximation given by quad is ’,

num2str(quad(f, 0, 2))])

The important command p = input(’question? ’) is used for in-
teractive work. There is a pause which allows you to enter the answer
you choose to the question in the parentheses. When you type and hit
enter the program continues and uses for p the value you entered.

This script also illustrates several aspects of the relationship between
symbolic expressions and anonymous functions. We began with f,
which is an anonymous function (f itself is the function handle). Since
syms x turns x into a symbolic object, we obtain a symbolic object
f(x) when we substitute into f. We use the notation fxsym for the
symbolic object that we get by applying symbolic differentiation to the
symbolic object f(x) (not to the anonymous function f). Now we use
subs in order to turn the symbolic object fxsym into an anonymous
function that we can evaluate numerically.

We used the important substitution command subs to convert a sym-
bolic expression to an anonymous function. In general, it is used to
replace a variable in a symbolic expression. subs(g,x,h) means sub-
stitute for the symbolic variable x into the symbolic expression g the
numerical or symbolic expression h. Try these out:

17

syms x

g = x^2

a = [1 : 5]

g(a)

b = subs(g,x,a)

c = subs(g,a)

z = subs(g,sin(x))

G = @(x) subs(g)

G(a)

G(x)

syms y

g = g*y

z = subs(g,x,sin(x))

w = subs(g,y,sin(x))

G = @(x,y) subs(g)

G(x,y)

G(a,y)

G(x,a)

Notice that the command subs automatically vectorizes the expression
when the substitution is performed. Also, when there is only a single
variable it can be omitted in the command. Finally, observe that when
used to define an anonymous function the specification of variables is
left to the declaration beginning with @.

Finally, recall that in Lab 1 we applied the command diff to numerical
arrays to get the vector of successive differences. Here the same com-
mand applied to a symbolic object computes the symbolic derivative.

The Symbolic Toolbox also allows us to manipulate with fractions and exact
expressions in radical form.

a = pi/2

f = @(x) x.^2.*sin(x)

syms x

g = cos(x/2) + sin(x/10)

18

b = f(a)

c = f(sym(a))

d = double(c)

b = subs(g,a)

c = subs(g,sym(a))

d = double(c)

With the introduction of symbolic objects, we have now met four of the five
types of Matlab expressions which will occur in this course. They are:

• numerical arrays: These are the numerical vectors
and matrices. Examples: a = 2, b = linspace(1,pi),
c = [1:5; 2 6 9 0 1].

• function handles: Associated with anonymous func-
tions. Using @ they can be attached to function m-files
or built-in functions. Examples: @(x) x.^2, @exp.

• symbolic objects: After certain variables have been
reserved as symbolic, for example, by using syms x, sym-
bolic objects can be defined directly or obtained by sym-
bolic differentiation or integration. Examples: g = sin(x^3),
gx = diff(g), G = int(g). Notice that g looks like a
function handle, but it isn’t one. It is a symbolic object.
g(a) yields an error message.

• character arrays: Also called strings, these are ar-
rays, like vectors or matrices, but not of numbers, merely
of typed expressions which are not interpreted. Expres-
sions in single quotes are strings. In our work we have
already used disp() which just displays the string in
parentheses. Example:
disp([’The number pi is ’ num2str(pi)]).
The command num2str(pi) converts the number pi to a
string. Compare: a = 3 + 2, b = ’3 + 2’, c = eval(b).
The command eval() evaluates the string. The com-
mand char() converts a symbolic object to a string
while the command sym() goes the other way, convert-
ing a string to a symbolic object. For example, syms x

is equivalent to writing sym(’x’).

19

• cell arrays: Also called lists, we won’t use these
much, but we include them for completeness. A list
is written with braces { } instead of parentheses ()

or brackets [], e.g., L = {5, pi/2, 2}. If we reserve
syms x y z and then define the symbolic object
M = x * sin(y) * log(z), then we can substitute the
values 5, π/2 and 2 for x, y and z by using
subs(M, {x,y,z}, L).

It is often hard to keep track of which expressions are which among
strings (= character arrays), symbolic objects and functions. You can
check by typing whos.

Assignments: Read help quad. Look over Appendix A: Symbolic Ex-
pressions in Matlab which is included at the end of this booklet.

Lab Homework: This is to be submitted via Digital Dropbox or printed
out and handed in. Follow the instructions given in class.

Consider the function given by f(x) = sin(x2)cos(x). Write out an
m-file to do the following:

1. Define the function and its derivative as symbolic expressions and
as anonymous functions.

2. Graph both the function and its derivative over the interval [0, π],
using different linestyles for the two graphs. End this portion with
a pause.

3. Looking at the graphs, observe roughly where the first positive
root of the derivative occurs. Enter this as guess = and then in-
put your rough numerical guess. Then apply a = fzero(, guess)

to get a more precise estimate for this root. Be careful: Which
function goes in fzero()? That is, you are looking for the place
where something equals zero. What is the something?

20

4. Evaluate the function to obtain the corresponding critical point
(a, b). Get the current figure back and plot a diamond at the
critical point.

5. (Optional) You can list and plot all of the critical points by in-
cluding in your m-file program a loop of the following sort.

k = 1; a = [];

while k == 1

guess = input(’guess for next root? ’)

p = fzero(fx, guess)

figure(gcf); plot(p, f(p), ’d’)

a = [a, p]

k = input(’Enter 1 if more roots. Otherwise enter 0’)

end

figure(gcf)

pause

disp(’Table of Critical Points Between 0 and pi’)

disp([a; f(a)]’)

21

Lab 4: Graphing Surfaces and

Plotting Lines in Space

Matlab Objects and Operations: rotating and
zooming in/out for surface plots,
anonymous functions of several variables, the constant eps

Matlab Commands: cross, meshgrid, surf, plot3,
shading interp, axis equal,
contour, clabel, contour3

(optional: mesh)

We introduce three dimensional plotting by graphing planes and parame-
terized lines. The command meshgrid is used for surface plotting the
way linspace or the colon operator is used for lines and curve plot-
ting in the plane. It is used to generate input locations. In response
to [x,y] = meshgrid(-1 : 2, 0 : .5 : 2) you get two matrices,
each has size [5 4] (that is, 5 rows and 4 columns) corresponding to the
x values −1, 0, 1, 2 and the y values 0, .5, 1, 1.5, 2. In the x matrix the 4
x values are repeated in 5 identical rows. In the y matrix the 5 y values
are repeated in 4 identical columns. Thus, in the (2, 3) position (second
row, third column) is the second y value and the third x value. The
y is looked at first because the conventions are: rows then columns; x
horizontal and y vertical.

However, you have to be careful about the number of divisions you use.
If you use 100 divisions for x and y (the default value for linspace) then
the response to the [x,y] = meshgrid(...) command defines each of
x and y as a 100×100 matrix, which has 10,000 entries. Of course, the
computer can easily handle data sets of that size but graphing becomes
very slow and the grid is too fine. On the other hand, you don’t want
the grid to be too coarse either. In general, it is best to use between
10 and 20 subdivisions for x and y. Don’t forget the semicolon ; .

Work in class: Consider the two planes with equations

x + y + z = 2

3x − 4y + 5z = −8

22

We graph them and plot the line of intersection between them. We
want to make sure that the rectangle over which we graph the two
planes contains the projection of some points that lie in both planes.
So we begin by computing a point of intersection and then use a square
centered on the xy coordinates of the point we find. We set z = 0 and
then solve the two equations for x and y. You should try this by hand so
that you can understand the Matlab procedure for solving the system.
It is given in the first three lines of the script.

clear all; close all

A = [1, 1; 3, -4]

b = [2; -8]

inter = A\b

disp(’An intersection point is ’)

p = [inter’, 0]

pause

[x,y] = meshgrid(p(1) + [-1:.2:+1], p(2) + [-1:.2:+1]);

z = 2 - x - y;

surf(x, y, z)

pause

shading interp; hold on;

pause

z = (-8 - 3 * x + 4 * y)/5;

surf(x, y, z)

pause

disp(’parallel vector for intersection line is ’)

v = cross([1, 1, 1],[3, -4, 5])

pause

M = (abs(v(1)) + abs(v(2)))/2;

t = [-1 : 1]/M

x = p(1) + t * v(1); y = p(2) + t * v(2); z = p(3) + t * v(3);

plot3(x, y, z, ’k’); plot3(p(1), p(2), p(3), ’rd’)

figure(gcf)

23

The cross product of two three dimensional vectors is given by the
command cross. For the dot product of two vectors a and b with the
same length we use sum(a.*b). The command surf is used to graph
surfaces. We used it above for the planes. The command plot3 is used
to graph curves in space given by parametric equations. We used it to
graph the line of intersection.

We graph surfaces of the form z = f(x, y) by starting with the
[x,y] = meshgrid(...) and then by expressing z directly as a for-
mula, as in z = x.^2 + y.^2. or by first defining an anonymous
function and then substituting as in z = F(x,y).

Work in class: We use the function given by f(x, y) = x2− y2 to illustrate
the different surface plots and contour commands.

clear all; close all

f = @(x,y) (x.^2 - y.^2)

[x, y] = meshgrid(-1 : .02 : 1);

z = f(x, y);

mesh(x, y, z)

pause

figure; surf(x, y, z)

pause

shading interp; hold on

pause

contour3(x, y, z, ’k’)

pause

clabel(contour3(x, y, z, 5, ’k’))

pause

figure; contour3(x, y, z)

pause

24

figure; contour(x, y, z)

hold on;

pause

clabel(contour(x, y, z, 5, ’k’))

Here we see different surface plots given by Matlab. Alternative pic-
tures of the surface itself are given by mesh (which we won’t need, but
you should be aware of it), surf and surf followed by shading interp.
The command contour draws contour curves in the xy plane while
contour3 draws them up on the surface. As illustrated here, contour3
is best used in a figure after surf shading interp hold on .
You can adjust the number of contour lines with a numerical instruc-
tion: contour3(x,y,z,20,’k’) draws 20 black contour lines on the
surface. The command clabel is used to label the contour curves with
the z value.

With the surface plots it is instructive (and fun) to use the zoom and
rotation commands which are on the bar at the top of the figure.

Now we use the same sequence of steps to look at the function given by
f(x, y) = x2−y2

x2+y2 . We use the graph near zero to consider whether

lim(x,y)→(0,0) f(x, y) exists or not. Notice that we include eps in the
denominator to avoid a division by zero and so avoid a hole that would
include the origin (exactly the location of interest).

Just go back the the m-file you just used, replace the function f in your
m-file by f = @(x,y) (x.^2 - y.^2)./ (x.^2 + y.^2 + eps) and
run it again.

25

Lab Homework: This is to be submitted via Digital Dropbox or printed
out and handed in. Follow the instructions given in class.

1. Write an m-file that first graphs the plane with equation
x + y− z = 2. Graph it over a square in the xy plane centered at
the point (3, 1). Then, on the same figure, plot the line through
(3, 1, 2) that is normal to the plane. Use the axis equal command
so that your normal actually looks perpendicular to the plane.

2. Plot the graph f(x, y) = (x2 − y2)2 + y3. Make a plot with 20
contour traces on the surface.

3. Plot the graph of the cylinder in space given by y = x3. Here you
can’t use [x,y] = meshgrid (why not?). Try [x,z] = meshgrid

instead, but use surf(x,y,z) as before.

26

Lab 5: Curves in Space

Matlab Commands: diff, input

Work in class: We graph a parametrized curve, compute its length and
draw a tangent line.

clear all; close all;

len = @(x,y,z) sqrt(x.^2 + y.^2 + z.^2)

f = @(t) t.*cos(5*t)

g = @(t) t.*sin(5*t)

h = @(t) t.^2/10

t = linspace(0, 2*pi, 10);

x = f(t); y = g(t); z = h(t);

dx = diff(x); dy = diff(y); dz = diff(z);

coarse = sum(len(dx, dy, dz));

plot3(x,y,z); grid on

disp(’Coarse polygonal length estimate equals ’);

disp(coarse)

pause

t = linspace(0,2*pi);

x = f(t); y = g(t); z = h(t);

dx =diff(x); dy = diff(y); dz = diff(z);

fine = sum(len(dx, dy, dz));

plot3(x,y,z); grid on ; hold on

disp(’Fine polygonal length estimate equals ’);

disp(fine)

pause

syms t;

x = f(t); y = g(t); z = h(t);

dx = diff(x)

27

dy = diff(y)

dz = diff(z)

speed = len(dx, dy, dz)

arc = quad(@(t) subs(speed), 0, 2*pi);

disp(’Arc length integral equals ’);

disp(arc);

pause

t0 = input(’t value for tangent line (t in (0,2pi))’)

p0 = [f(t0), g(t0), h(t0)]

V0 = subs([dx,dy,dz],t,t0)

s = [-1:1];

plot3(p0(1) + s*V0(1), p0(2) + s*V0(2), p0(3) + s*V0(3), ’g’)

plot3(p0(1), p0(2), p0(3), ’rd’)

Here we see contrasted the two uses of the command diff. For the
coarse and fine polygonal estimates, we used the numerical command.
Later, we obtained dx, dy, dz, symbolic expressions in the variable t,
by using symbolic differentiation. Applying the function len we obtain
speed as a symbolic expression in t. In quad we used the conversion of
speed to the handle of an anonymous function.

Lab Homework: This is to be submitted via Digital Dropbox or printed
out and handed in. Follow the instructions given in class.

For the curve given parametrically by x = cos(t); y = cos(2t); z = t2

obtain fine and coarse estimates of the length between t = 0 and t = 2π
and then use quad to integrate numerically.

In detail, plot the curve in red with a spacing of .5, hold the graph,
and then repeat with a spacing of .1 in blue. For the finer spacing,
identify the points by plotting again using ◦ as a linestyle. Look back
in Lab 1 for the table. Calculate the polygonal length for each of these
two spacings by using sum and then calculate the length by using quad

applied to the integral formula.

28

Lab 6: Graphing Surfaces and Their Tangent

Planes

Matlab Objects and Operations: symbolic expressions in several vari-
ables, symbolic partial derivatives

Matlab Commands: diff(,x), diff(,y), surfc, input

Work in class: When you define an anonymous function in several vari-
ables, you declare all of the variables in parentheses after the @ symbol.

clear all; close all

syms x y

fsym = (x^2-x)*y

fxsym = diff(fsym, x)

fysym = diff(fsym, y)

f = @(x,y) subs(fsym);

fx = @(x,y) subs(fxsym);

fy = @(x,y) subs(fysym);

x0 = input(’x-coordinate of the point of tangency ’);

y0 = input(’y-coordinate of the point of tangency ’);

z0 = f(x0, y0)

[a b] = meshgrid(x0 + [-2:.2:2], y0 + [-2:.2:2]);

c = f(a, b);

surfc(a, b, c)

shading interp; hold on;

pause

L = z0 + fx(x0, y0)*(a-x0) + fy(x0, y0)*(b-y0);

surf(a, b, L)

plot3(x0, y0, z0, ’rd’)

29

Here we have illustrated an alternative way to proceed when we want to
do symbolic differentiation. If we had used the approach demonstrated
in Lab 3 we would have begun

f = @(x,y) (x.^2 - x).*y

syms x y

fx = diff(f(x,y), x)

fy = diff(f(x,y), y)

That is, there we began by defining the anonymous function f and then
differentiated the symbolic expression f(x,y), which is the same as
what we are here calling fsym. This time we are starting with the
symbolic expression fsym and then define the anonymous function f
by using the subs command just as we do for fxsym. The two pro-
cedures are completely equivalent. You may use either one (or both).
Notice that if we begin with the anonymous function we have to be
sure and vectorize. If we begin with the symbolic expression we don’t
have to because subs does it automatically.

When we have symbolic expressions of several variables you have to
declare which variable is being differentiated. That is why we didn’t
just write diff(fxsym) or diff(f(x,y)).

We also illustrated the surfc command which exhibits the surface
graph together with the contour curves on the xy plane below.

Matlab Oddity: Matlab sometimes has trouble switching variables. Try
this:

f = @(x,y) x.^2.* cos(y)

syms x y

gsym = x^2 * y

g = @(x,y) subs(gsym);

a = f(x,y)

b = f(y,x)

c = g(x,y)

d = g(y,x)

30

The problem here is that when using subs Matlab substitutes one vari-
able at a time. Think about why this gives you the results you got.

Lab Homework: This is to be submitted via Digital Dropbox or printed
out and handed in. Follow the instructions given in class.

1. Exhibit the cone z2 = (x2 + y2)/4 and the cylinder y2 + z2 =
1 together in a single graph over a rectangle in the xy plane.
Remember the axis equal command. Don’t forget the top and
the bottom of the cone and the cylinder.

2. Plot the graph of z = sin(x2 + y2) together with its tangent
plane at the point (1, 1, sin(2)).

31

Lab 7: Gradients and Max/Min Problems

Matlab Commands: max, min

ones, zeros, size

surfc

quiver, quiver3

for . . . end, pause(n)

In this section we look at the gradient vectors for surfaces of the form
z = f(x, y). In the xy plane the two-dimensional vector field grad(f) is
perpendicular to the contour lines. In three space we define F (x, y, z) =
z − f(x, y) and look at the portion of the vector field grad(F) which
is attached to the contour surface F = 0, i.e. the original surface. We
also find numerical estimates for the absolute maximum and minimum
of the surface for the portion which we have graphed. This generalizes
to surfaces in space the method used in Lab 2 for curves in the plane.

Work in class: After obtaining the partial derivatives, we solve, by hand,
the system of equations Fx = 0, Fy = 0 to get the critical points.

clear all; close all

syms x y

fsym = f = (10*x.^2 - 5*y.^2 + 3*x.*y).* exp(.1*(-x.^2 - y.^2))

fxsym = diff(fsym, x)

fysym = diff(fsym, y)

f = @(x,y) subs(fsym);

fx = @(x,y) subs(fxsym);

fy = @(x,y) subs(fysym);

pause

[u, v] = meshgrid(-5 : .2 : 7);

w = f(u, v);

surfc(u, v, w)

pause

32

contour(u, v, w, 25)

pause; hold on

clabel(contour(u,v,w,10))

pause; hold off

contour(u,v,w,25); hold on

[a, b] = meshgrid(-5 : .5 : 7);

quiver(a, b, fx(a, b), fy(a, b), 2)

pause

figure; contour3(u, v, w, 20, ’k’); hold on

pause

clabel(contour3(u, v, w, 5, ’k’))

pause

figure; surf(u, v, w); shading interp

pause

quiver3(a, b, f(a, b), -fx(a, b), -fy(a, b), ones(size(a)), 1/2)

pause

z = w(1 : prod(size(u)));

[M, iM] = max(z);

disp(’maximum point is ’);

disp([u(iM), v(iM), M]);

[m, im] = min(z);

disp(’minimum point is ’);

disp([u(im), v(im), m]);

pause

figure; surf(u, v, w); hold on;

plot3(u(iM), v(iM), M, ’rd’)

plot3(u(im), v(im), m, ’gd’)

33

The new command here is quiver which draws arrows in the plane,
and its three dimensional version quiver3 which draws arrows in
space. For each you specify a point at which the arrow is based and a
vector which is based at the point. You can add values to specify a scale
factor and the color. Run the following as an m-file to see how they
work. Notice that we specify the axis values so that the arrow does not
take up the whole picture. Also, in the little program we don’t want
the axis to keep changing as we change the length of the vector.

xyz = [-2, 7]

quiver(2,1,1,3); axis([xyz xyz]); grid on;

pause

hold on

a = [2, 3]

b = [1, 4]

z = zeros(1, 2)

pause

quiver(z, z, a, b, ’g’); hold off

pause

a = [0, 0, 1; 1, 2, 3]

b = [2, 1, 5; 1, 3, 0]

c = [1, 2, 4; 7, 3, 3]

quiver3(a, b, c, -a, -b, -c); axis([xyz xyz xyz]); grid on;

pause

figure; axis([xyz xyz xyz]); grid on; hold on

for t = [1:25]

quiver3(a, b, c, -a, -b, -c, .1 * t)

pause(.5)

end

Often we want to specify a vector of zeros or ones. The command
zeros(m, n) gives an m × n matrix of zeros. If we start with a

matrix a then zeros(size(a)) gives a matrix of zeros with the same
size as a. The command ones works the same way.

In the little program we stretched the arrows through 25 steps. The
command pause(n) pauses for n seconds and then continues. Compare
this with pause which waits for you to hit any key as a prompt to

34

continue. In the for ... end loop there was a half second pause after
each step.

The use of the max and min commands work as they did in Lab 2, but for
one complication (of course). Remember that [M i] = max(z) gives
the maximum value and the location on the z vector of the maximum.
So z needs to be a vector. Because of the meshgrid construction w is a
matrix. If w is an m× n matrix, that is, size(w) = [m n] then we
convert w to a row vector of length mn which equals prod(size(w))

by using the command z = w([1 : prod(size(w))]). Then from
[M i] = max(z), x(i) and y(i) give the x and y coordinates of the
maximum point. At this point you should go back to Lab 1 to look
up the two different ways of specifying the location of an entry in a
matrix.

Lab Homework: This is to be submitted via Digital Dropbox or printed
out and handed in. Follow the instructions given in class.

Graph and make a contour plot of f(x, y) = y4 + x3 − 10y2 − 3x + 20
over the square [−3, 3] × [−3, 3]. Solve for the critical points by hand
to make sure that they are all included. Then plot a gradient field on
the surface. Finally, identify the maximum and minimum using max

and min.

35

Lab 8: Graphing Parametrized Surfaces

Matlab Commands: ones, zeros

Work in class: We graph a parametrized surface and illustrate the normal
vector obtained as the cross product of the partial velocity vectors.

clear all; close all;

syms u v

gsym = [u^3+v, v^2-u, u*v]

gusym = diff(gsym, u)

gvsym = diff(gsym, v)

Nsym = cross(gusym, gvsym)

g1 = @(u, v) subs(gsym(1));

g2 = @(u, v) subs(gsym(2));

g3 = @(u, v) subs(gsym(3));

gu1 = @(u, v) subs(gusym(1));

gu2 = @(u, v) subs(gusym(2));

gu3 = @(u, v) subs(gusym(3));

gv1 = @(u, v) subs(gvsym(1));

gv2 = @(u, v) subs(gvsym(2));

gv3 = @(u, v) subs(gvsym(3));

N1 = @(u, v) subs(Nsym(1));

N2 = @(u, v) subs(Nsym(2));

N3 = @(u, v) subs(Nsym(3));

[U, V] = meshgrid(-3:.2:3);

X = g1(U, V);

Y = g2(U, V);

Z = g3(U, V);

mesh(X, Y, Z)

axis equal

hold on

pause

36

quiver3(X, Y, Z, gu1(U, V), gu2(U, V), gu3(U, V), 2, ’r’)

pause

quiver3(X, Y, Z, gv1(U, V), gv2(U, V), gv3(U, V), 3, ’g’)

pause

quiver3(X, Y, Z, N1(U, V), N2(U, V), N3(U, V), 2, ’k’)

pause

surf(X, Y, Z); shading interp

Matlab Oddity: Notice that the partial derivatives gu2 and gv1 are con-
stants. This can lead to problems although it didn’t here.

f = @(x) x.^2

g = @(x) 3

h = @(x) 3 + x - x

a = [-2 : 3]

c = f(a)

d1 = g(a)

d2 = h(a)

d3 = 3 * ones(size(a))

You see that f(a) is a vector, obtained by substituting a into the vec-
torized anonymous function f . On the other hand, d2 and d3 give what
you expect from g(a) a vector of the same length as a with all entries
equal to 3. However, g(a) is just the scalar 3.

For most purposes this doesn’t matter because arithmetic with scalars
is automatically vectorized.

c = f(a).* sqrt(f(a))

d = g(a) + g(a).* f(a)

In the m-file we started with the command quiver3 worked ok despite
the scalar entries gu2(U, V) and gv1(U, V). However, quiver is not so
forgiving

syms t

xsym = t

37

ysym = cos(t).*(2*sin(t) + 1)

xtsym = diff(xsym)

ytsym = diff(ysym)

x = @(t) subs(xsym);

y = @(t) subs(ysym);

xt = @(t) subs(xtsym);

yt = @(t) subs(ytsym);

a = [0:3*pi/100:3*pi];

b = [0: 3*pi/10:3*pi];

plot(x(a),y(a))

grid on; hold on;

pause

quiver(x(b),y(b),xt(b),yt(b))

pause

figure; plot(x(a),y(a))

grid on; hold on;

pause

quiver(x(b),y(b),ones(size(b)),yt(b))

Work in class: We use spherical coordinates as a parametrization for the
top half of the ellipsoid given by x2 + 4y2 + 4z2 = 16. Then on the
same graph we plot the parabolic cylinder given by y = x2. By hand
you can parametrize the curve of intersection and compute the points
where the curve begins and ends. These endpoints occur when z = 0
and so are obtained by solving the quadratic equation: y + 4y2 = 16.
Finally we graph the curve of intersection, and estimate its arclength

clear all; close all

[theta, phi]= meshgrid(0:pi/10:2*pi, 0:pi/10:pi/2);

x = 4*sin(phi).*cos(theta);

y = 2*sin(phi).*sin(theta);

z = 2*cos(phi);

surf (x, y, z)

grid on

hold on

pause

38

axis equal

shading interp

pause

[x, z] = meshgrid(-2:.2:2, 0:.1:2.5);

y = x.^2;

surf(x, y, z)

pause

syms t

t0=-1.37

t1=1.37

xsym = t

ysym = t^2

zsym = 2*sqrt(1-(xsym/4)^2-(ysym/2)^2)

speed = @(t) subs(sqrt(diff(xsym)^2+diff(ysym)^2+diff(zsym)^2))

L1 = quad(speed, t0, t1);

disp(’arc length integral equals ’);

disp(L1);

T = linspace(t0, t1);

x = subs(xsym, T);

y = subs(ysym, T);

z = subs(zsym, T);

plot3(x, y, z, ’rd’)

L2 = sum(sqrt(diff(x).^2 + diff(y).^2 + diff(z).^2));

disp(’polygonal length estimate equals ’);

disp(L2);

We have seen in previous work that a surface which is described by the
equation x = f(y, z) is graphed using [y, z] = meshgrid.

The parametrization of the ellipsoid uses spherical coordinates.

39

Lab Homework: This is to be submitted via Digital Dropbox or printed
out and handed in. Follow the instructions given in class.

1. Plot the Möbius Strip as the parametric surface given by:

x = 2 cos(θ) + r cos(
θ

2
),

y = 2 sin(θ) + r cos(
θ

2
),

z = r sin(
θ

2
)

with −1
2
≤ r ≤ 1

2
and 0 ≤ θ ≤ 2π. So the parameters are r and

θ = theta.

2. Use spherical coordinates to plot that portion of the sphere of ra-
dius 3, centered at the origin with latitude angles between ±60◦.
Remember that the angle φ opens down from the north pole so
that the equator is at φ = π/2. We want the part of the sphere
with latitude angle varying from 60◦ above to 60◦ below the equa-
tor.

3. Exhibit the cone z2 = (x2 + y2)/4 and the cylinder x2 + y2 = 1.
together in a single graph. Use polar coordinates r and θ = theta

to parametrize the x and y variables,

40

Lab 9: Multiple Integrals

Matlab Commands: dblquad, quadv,
warning off, warning on

Work in class: We compute the double integral
∫ 2

0

∫ 1

0

x
√

x2 + y dx dy

first using the symbolic package and then by using the
numerical integration command dblquad.

clear all; close all

syms x y ;

f = @(x,y) x.*sqrt(x.^2 + y)

pause

I1 = int(f(x,y), x)

disp(’int_0^1 x sqrt(x^2 + y) dx equals ’);

D1 = subs(I1,x,1) - subs(I1,x,0)

pause

I2 = int(I1, y)

disp(’int_0^2 \int_0^1 x sqrt(x^2 + y) dx dy equals ’);

D2 = subs(I2,y,2) - subs(I2,y,1)

pause

disp(’The numerical estimate using dblquad is ’);

disp(dblquad(f, 0, 1, 0, 2));

We compute the double integral

∫ 1

0

∫ x2

0

√
x3 + 1 dy dx

first using the symbolic package just as before. When we use dblquad,
we need a trick because dblquad only works over rectangular regions.

41

clear all; close all

syms x y ;

f = @(x,y) sqrt(x.^3+1);

pause

I1 = int(f, y)

disp(’int_0^{x^2} sqrt(x^3+1) dy equals ’);

D1 = subs(I1,y,x^2)

pause

I2 = int(D1, x);

disp(’int_0^1 int_0^{x^2} sqrt(x^3+1) dy dx equals ’);

D2 = subs(I2,x,1) - subs(I2,x,0)

pause

F = @(x, y) f(x,y).*(v<=u.^2)

pause

[u, v] = meshgrid(linspace(0, 1, 50));

surf(u, v, F(u, v))

pause

disp(’The numerical estimate using dblquad is ’);

disp(dblquad(F, 0, 1, 0, 1));

The requirement that the integration be over a rectangle limits the
usefulness of the command dblquad. At times the trick we used above
leads to inaccurate estimates. What we would like to do is imitate with
the numerical integration command quad what we did with symbolic
command int. That is, we would like to compute the double integral
as an interated integral. We have to be careful because quad is strictly
numerical. Compare

a = quad(@(x) x.^2,0,1)

quad(@(x) x^2,0,1)

quad(@(x) x.^2 + y,0,1)

syms y; quad(@(x) x.^2 + y,0,1)

42

quad(@(x,y) x.^2 + y,0,1)

The first one is the standard use of quad with the handle for a func-
tion of a single variable. The rest give error messages. First we are
reminded that the function must be vectorized. The rest indicate that
you cannot mix symbolic or undefined variables in with the numerical
routine. What does work is

I1 = @(y)quad(@(x) x.^2 + y,0,1)

What I1(3) does is substitute 3 for y and then applies quad to
@(x) x.^2 + 3, to get 3.3333. The remaining problem is that this
function is not vectorized. So I1([0:3]) gives an error message. This
means you can’t integrate it. You get an error message with quad(I1,0,1)

as well.

Happily the command quadv does what quad does and vectorizes the
result. Thus, we can replace dblquad in our original problem.

I1 = @(y)quadv(@(x) x.*sqrt(x.^2 + y),0,1)

I2 = quadv(I1,0,2)

pause

I1 = @(x)quadv(@(y) sqrt(x.^3 + 1),0,x.^2)

I2 = quadv(I1,0,1)

In the second example the variable upper limit of integration results in
some warning messages. Nonetheless, the program completes the run
and gets the correct answer.

Matlab Oddity: In Lab 6 we mentioned that one could either define
f = @(x,y) x.^2 + y and then, after reserving syms x y, use it
to get the symbolic expression fsym = f(x,y), or we could go the
other way, defining fsym = x^2 + y and then using subs to define
f = @(x,y) subs(f). We remarked that the latter expression was

automatically vectorized by subs. True enough, except sometimes not.
Try

syms x y

fsym = x.^2 + y

f = @(x,y) subs(fsym)

dblquad(f,0,1,0,3)

43

Despite our vectorizing the symbolic expression, dblquad is complain-
ing that the function f is not vectorized. Thus, it is probably better
to begin with the anonymous function except when the symbolic ex-
pression turns up after applying diff, which is where we first used the
@() subs(...) construction.

Assignment: In the Lab read the Matlab responses to help dblquad and
help int.

Lab Homework: This is to be submitted via Digital Dropbox or printed
out and handed in. Follow the instructions given in class.

1. Compute the double integral

∫ π/3

0

∫ π/6

0

x sin(x + y) dxdy

using all three methods: symbolic, via dblquad and as an iterated
numerical integral using quadv.

2. Consider the portion of the surface given by z = f(x, y) = y − x2

which lies above the region in the xy plane where 0 ≤ x ≤ 1, x2 ≤
y ≤ 1. Parametrize the surface by using [s,t] = meshgrid(0:.05:1)

and then x = s; y = s2 + t(1− s2); z = f(x, y) and plot the graph.

Use a double integral to compute the volume of the solid bounded
by the surface and the planes z = 0, x = 0 and y = 1. First use
int for symbolic integration and then use quadv.

3. One can use the same procedure for triple (and higher) integrals.
For example,

∫ 1

0

∫ z

0

∫ y

0

ze−y2

dx dy dz

is computed using quadv:

44

warning off;

quadv(@(z) quadv(@(y) quadv(@(x) ...

z.*exp(-y.^2), 0, y), 0, z), 0,1)

warning on;

The nesting of the quadv(@(..)..) commands works just like the
integral notation. The warning off command is used (first!) be-
cause without it you get a long list of grumpy warnings before the
(correct) computation is completed. It is best to turn the warn-
ings back on at the end. Notice also that if a line of instructions
is very long you can break it up by typing three periods ... and
then enter to go to a new line. Matlab interprets the entire
instruction as though it is written on a single line.

Use this method to compute the triple integral of x + 2y over the
solid S which is bounded by the parabolic cylinder y = x2 and the
planes z = x, x = y and z = 0. First, plot the solid (remember
hold on) and then do the triple integral.

45

Lab 10: Iteration and

Taylor Series Approximation

Matlab Commands: subs, polyval, for ... end

cumprod, cumsum

Work in class: We illustrate the motion of terms of a sequence by iterating
the quadratic function given by f(x) = mx(1 − x) for different values
of the slope m at x = 0.

clear all; close all

syms x

m = input(’Slope at x = 0? ’);

f = m*x*(1 - x)

a = input(’Initial value ’);

for k = 1:20

a = [a, subs(f,x,a(k))];

end

figure(1);hold on;axis([0,20,min(a)-1,max(a)+1])

for k= 1:20

plot([k-1,k],[a(k),a(k+1)]);

pause(.5);

end

plot([0:20],a,’r.’)

pause

u= linspace(0,1);

figure(2); plot(u, subs(f,x,u),’k’); hold on;

pause

plot(u,u,’g’)

pause

for k= 1:20

plot([a(k),a(k),a(k+1)],[a(k),a(k+1),a(k+1)]);

pause(.5);

end

plot(a, subs(f,x,a),’r.’)

46

We can do this for a general function which you can input as a symbolic
expression. Try using the functions cos(x) and

√
x + 3 with initial value

0 in each case.

clear all; close all

syms x

f = input(’Type function as symbolic string in the variable x ’);

a = input(’Initial value ’);

for k=1 : 20

a = [a, subs(f,x,a(k))];

end

figure(1);hold on;axis([0,20,min(a)-1,max(a)+1])

for k= 1:20

plot([k-1,k],[a(k),a(k+1)]);

pause(.5);

end

set(gca,’Ytick’,sort([a(1),a(20)]));

plot([0:20],a,’r.’)

b=unique(a);

set(gca,’Ytick’,sort(a([1,4,8,21])));

plot([0:20],a,’r.’)

[c;b]’

pause

u=linspace(0,1);

figure(2);plot(u,subs(f,x,u),’k’); hold on;

pause

plot(u,u,’g’)

pause

for k= 1:20

plot([a(k),a(k),a(k+1)],[a(k),a(k+1),a(k+1)]);

pause(.5);

end

plot(a,subs(f,x,a),’r.’)

Work in class: We compare the graph of y = ex with the graph of each of
the first five partial sums of the MacLaurin series for ex.

47

Each of these partial sums is a polynomial. A polynomial in x can be
described by listing its coefficients in decreasing order. Zero coefficients
act as place holders just like in ordinary numbers and so cannot be
omitted. Observe that 5098102 = polyval([5 0 9 8 1 0 2],10).

clear all; close all

x = linspace(-1, 3);

coeff = [1];

plot(x, exp(x), x, polyval(coeff, x))

title(’compare with constant term’)

pause

for k = 1:10;

c= coeff(1)/k;

coeff= [c, coeff];

plot(x, exp(x), x, polyval(coeff, x))

title([’terms through the power’ num2str(k)])

pause

end

We can do this one as well for a general function which you can input
as a symbolic expression.

clear all; close all

syms x;

f = input(’Type in the function as a symbolic expression in x ’)

g = f;

coeff = [subs(g, x, 0)];

a = linspace(-1, 3);

b = subs(f, x, a);

plot(a, b, a, polyval(coeff, a)); axis([-1,3,min(b)-1,max(b)+1]);

title(’compare with constant term’)

factor = 1;

pause

for k = 1 : 25;

g= diff(g)

48

factor = factor/k

c= subs(g, x, 0)*factor;

coeff= [c, coeff];

plot(a, b, a, polyval(coeff, a)); axis([-1,3,min(b)-1,max(b)+1]);

title([’terms through the power’ num2str(k)])

pause

end

A good example to use is f = cos(5x + x2).

In computing factorials, we can obtain k! for a positive integer k by using the
command prod([1:k]). Often it is convenient to use k! = ((k−1)!)×k.
This is what we did in the for ... end loop. The expression factor
had a (k − 1)! in the denominator. We divided by k to get k!. For
factorials which are not too large the command cumprod is helpful. It
returns the cumulative products. That is, in position i cumprod(a)

gives the product of the first k entries of a. Thus, cumprod([1:k])
lists the factorials from 1 up to k!. Similarly, cumsum which returns
the cumulative sums. That is, cumsum(a) lists the partial sums of the
finite sequence a.

For a vector a of length n, the command polyval(a,b) computes the value
at b of the polynomial function whose coefficients, in decreasing order,
are given by a. Thus, if a = [3, 2, 0, 1] then polyval(a,b) computes
p(b) where p is the function given by p(x) = 3x3 +2x2 + 1. Notice that
the zero coefficients have to be included as place holders.

The expression is vectorized. That is, if b is a vector then polyval(a,b) is
the vector with length that of b obtained by substituting each entry into
the polynomial.

We can obtain the polynomial as an anonymous function by using
p = @(x) polyval(a,x).

Assignment: In the Lab read the Matlab response to help polyval.

49

Appendix A: Symbolic Expressions in MatLab

To create symbolic variables in Matlab use the syms command:

syms x y real

Note that commas do not separate the variables you want declared symbolic.
The real designation is optional. If you are sure that the variables will not
take on complex values, then the real option may produce simpler formulas
when Matlab manipulates expressions that involve radicals or logarithms.

You can now define a symbolic expression using the usual operators. Note
that vectorization is not applicable in symbolic expressions (at least not
directly) and does not have to be used in the definition. For example,

w=x^2-3*x

defines a symbolic expression w. The dependent variable w does not have to
be declared symbolic prior to using it.

Evaluating Symbolic Expressions

To evaluate a symbolic expression use the subs command. Consider the
following examples:

subs(w,2)

ans =

-2

The command subs(w,2) substitutes for the independent variable in w the
value 2.

subs(w,1/3)!

ans =

-0.8889

Here the substitution in w has been done numerically. Since the input is an
exact fraction one might also expect that it should be possible to obtain an
exact fractional value. Indeed this can be done.

50

subs(w,sym(1/3))

ans =

-8/9

The command sym tells Matlab to enter the symbolic fraction 1/3 rather than
the numerical fraction. We can equally well convert the symbolic answer to
numerical form using the double command.

double(ans)

ans =

-0.8889

We mentioned above that symbolic expressions need not be entered in vec-
torized form. Nonetheless, the subs command can evaluate these expressions
for an array of inputs.

subs(w, [1 -1 1.5])

ans =

-2.0000 4.0000 -2.2500

If we have a symbolic expression in two or more variables the substitution
must be carried out more explicitly so that Matlab knows which values are
to be substituted for which variables. For example,

z=x^2+y^2

z =

x^2+y^2

X=[1 2 3]; Y=[1, 3, 5]; % Lists of values substituted for x and y.

subs(z, {x,y}, {X,Y})

ans =

2 13 34

Observe the set brackets {} that are used to specify the variables in z and
the corresponding replacements. These are used to specify lists. In this

51

example, Matlab replaces the variables x and y by the pairs obtained from
the two arrays X and Y . Thus, it first evaluates z for x = 1, y = 1, then
for x = 2, y = 3, etc. Observe that we have used the fact that Matlab
distinguishes between the variables x and X. We use the capital form to
hold the numeric values we wish substituted for x. When you use a symbolic
variable such as x, you should never assign a numerical value to x through
a statement such as x = 2. Doing so will destroy the symbolic quality of the
variable.

Some Calculus

Differentiation of symbolic expressions is straightforward. Use the diff

command. For the expression w defined earlier we get

diff(w)

ans =

2*x-3

This is the first derivative. Higher order derivatives are readily computed
by including the desired order in the diff command. For example, to find a
second derivative of w enter

diff(w,2)

ans =

2

For a multivariate expression we can use diff to find partial derivatives.
Referring to z we have

diff(z,x)

ans =

2*x

and

52

diff(z,y)

ans =

2*y

The diff command is vectorized, that is, it will differentiate all symbolic
components in a vector input. This is particularly useful in dealing with
curves, for example. Suppose we wish to study the curve defined by the
parametric equations x = t2, y = t3. Let us first add t to our list of symbolic
variables, using syms t real

Now we define the symbolic parametric equations defining the curve:

r=[t^2 t^3]

r =

[t^2, t^3]

The components of the tangent vector to the curve are given by differentiation
of the component functions.

dr=diff(r)

dr =

[2*t, 3*t^2]

As you know, integration of symbolic expressions may be considerably more
difficult than differentiation. The int command can be used to find an
antiderviative or to obtain an exact expression for a definite integral. For
example,

int(w)

ans =

1/3*x^3-3/2*x^2

produces
∫

(x2 − 3x)dx (without the constant of integration). You can get
Matlab to write the expression in a somewhat easier to read form using the
pretty command.

53

pretty(ans)

3 2

1/3 x~ - 3/2 x~

The ~ indicate that the symbolic variable has certain assumptions in its
definition. In this case we assumed the variables represented real quantities.
If no assumptions are made, the letters appear without the ~ symbol.

Definite integrals can be evaluated by including the limits of integration.

int(w, 0, 2)

ans =

-10/3

computes
∫ 2

0
(x2 − 3x)dx . In some cases exact symbolic answers cannot be

obtained for the integration problem you wish to consider. In such situations
you can evaluate a definite integral numerically using the quad command.
(”quad” is an abbreviation for quadrature, which is an old-fashioned name
for integration). As a numerical routine, the quad command requires its
input to be vectorized, that is the expression it works with has to be able
to accept array inputs. In order to use quad on the symbolic expression w,
the latter must first be converted to vectorized form using the vectorize

command (which also converts the symbolic expression to a string).

W=vectorize(w)

W =

x.^2-3.*x

Now we can apply quad to the vectorized expression W .

quad(W,0,2)

ans =

-3.3333

Of course we obtain the numerical approximation to the exact symbolic an-
swer -10/3 found above. Alternatively, we can convert w to an anonymous

54

function W = @(x) subs(w) and then use quad(W,0,2) to get the same an-
swer.

An Exercise

1. For the curve C given by the parametric equations r = [t2, 2t3− t] find
symbolic expressions for the tangent vector r′ = dr

dt
.

2. Using the symbolic expression found in 1. find a unit tangent vector
to C at the point corresponding to t = 1.5.

3. Set up a symbolic definite integral (using int) for the arclength of C
between [0, 0] and [1, 1]. Recall that the arclength is given by the

integral of the speed, that is, an integral of the form
∫ b

a
|r′(t)| dt. Find

the numerical (decimal) value using the double command.

4. Using quad evaluate the arclength specified in 3. Compare with the
answer you found in 3. Which answer is correct? What lesson is to be
learned from this?

5. Plot the curve C for −2 ≤ t ≤ 2.

55

Appendix B: Publishing m-files to HTML

When we ran the m-files described in the text above we produced nice graphs,
which you could print using the Print button in the graphics window. How-
ever, the m-file code is sitting in the Editor window. You could print that as
well, as a separate document. We would prefer to produce a report showing
the code and the output, including the graphs. Matlab, however, provides a
way to actually print your m-file code and its output in a single document.
It’s called publishing. It allows you to publish your result as a webpage
(HTML), a PowerPoint presentation, a Word document, or in several other
formats. We will describe how to take your completed m-file and publish it
to a webpage, which Matlab calls ”Publish to HTML.”

In this case, where the m-file produces only a single output at the end, all
you do is go to the File menu in the editor and select ”Publish to HTML.”
There is also a button at the left side of the icon bar that does the same
thing. In very short order, a window will appear with your code and output
(the graph). You can then print that window for a complete record of your
work and what it produces. Very neat

For m-files that produce more than one output you divide the m-file into
regions called ”cells.” Any output produced by a command in a cell appears
right after the cell, rather than at the end of the document. This makes your
document into something like a report, which is the basic idea of this feature.
You can add additional ”markup” to cells to give them a more distinctive
appearance, as well as provide a hyperlinked structure for the webpage that
is produced.

If you would like to learn more about the features of publishing, there is
an excellent video demo that you can access from the Matlab Help menu.
Start from the Help menu on the toolbar above the main Matlab screen.
Click on Matlab Help. On the window which comes up there are several
tabs on the left, below the phrase Help Navigator. Click on the Demos
tab and then on the + next to Matlab. Open the folder named Desktop
Tools and Development. Look for the video called Publishing M
Code from the Editor. The helpful Irishman will show you the many
features of the publish option. However, we will pick out the special aspects
which you are most likely to use.

To see the result of publishing, look at the first of the Mathematics
Demos. This is an m-file called Basic Matrix Operations. When you
click on it you see the published output of the sort we will get. At the top

56

you see Open intro.m in the Editor. When you click on this you see
the m-file itself. The important thing to observe is the comment labels,%,
and the double comments, %%. The sample we will use is a version of the
classwork done in Lab 03.

When you want to publish your m-file, first open it and look at the
toolbar in the Editor window. In the menu under Cell click on Enable
Cell Mode. A second toolbar will open up. If you see Disable Cell
Mode then the cell mode is already on. Leave it on.

In your m-file, at the top, after a single comment % and a space, type
the name of the file. The name of the m-file should include your name. Each
separate cell begins with a double comment %% and a space followed by a
typed label for the cell. The labels for the separate cells will be listed right
at the beginning as “contents”. Within each cell only the last figure will
be printed into your report, so make sure that each figure that you want to
appear occurs in a separate cell.

Make sure that you save all the changes you have made and then click on
publish. That is, under File click on Publish to HTML on just use the
icon all the way to the left on the cell toolbar.

% HarryPotterLab03

clear all; close all

%% function and derivative

f = @(x)x.*cos(x.^2)

syms x

fxsym = diff(f(x))

fx = @(x)subs(fxsym)

pause

u = linspace(-.5,3);

v = f(u);

w = fx(u);

whos

pause

%% function plot

plot(u,v); grid on; hold on

pause

%% derivative plot

plot(u,w,’g’)

%% tangent line

57

p = 1.4

%p = input(’x value for tangent point? ’)

q = f(p) + fx(p)*(u - p);

figure(gcf); plot(u,q,’k’); plot(p,f(p),’rd’)

pause

%% integral

Fsym = int(f(x))

F = @(x) subs(Fsym)

disp([’The integral from 0 to 2 of f is F(2) - F(0) = ’,

num2str(F(2)-F(0))])

disp([’The numerical approximation given by quad is ’,

num2str(quad(f,0,2))])

Notice that I disabled the line p = input(’x value ... with a %
and just put in a value (in this case p = 1.4) before I published. The
Publish scheme can’t deal with interactive commands like input and error
messages result. When using the m-file interactively, rather than publishing
it, I uncomment the input line and comment the p = 1.4 instead.

The command pause is the one interactive command that you can use and
you should do so. When you publish, Matlab will run the m-file and pause,
as usual, at each pause command. Make sure your cursor is somewhere in
the command window and not in your m-file (so you don’t type new and
unwanted stuff into the m-file) and then hit anykey, as usual. Of course, you
can avoid having to do this by commenting all the pause commands, but get
used to not doing that. In graphing, you can manipulate the figure while it
is paused. For example, you can rotate a surface in 3D by using the Figure
window. Remember that the final version of the figure is what gets printed
in your report. So you can change the figure and then respond to the pause.
For this reason it is a good idea to make sure that there is a pause after each
figure that you want to appear in the report. If you don’t like the look, then
just Publish again. The previous version will be overwritten.

Once you have the HTML file, you can print it. However, the HTML file
itself is hidden away in a folder in the Matlab program. You can keep the
HTML file, for your own use or to submit your homework electronically. For
this purpose it is best to have your own jumpdrive (= flashdrive, memory
stick, etc.). Plug it into the USB port in the computer. It will appear
in My Computer as Removable Disk. Now under File in the Editor
toolbar, click on Preferences. In the window which comes up, under

58

Editor/Debugger click on Publishing. Under Location the default,
subdirectory named html in source file directory has a dot in it.
Instead click on Single directory and hit the box to the right which lets
you Browse. Find Removable Disk and open it. Hit New Folder and
when the folder appears, type the name of the m-file, including your name, to
label the folder. Then hit Apply and then OK and the preferences window
goes away. Then when you publish the files which result appear in that
folder. Do this business with preferences each time you publish a new m-file
(but not when you republish one you are working on) so that you can open a
new folder with a new label for each new m-file. It is important to store each
m-file in a separate folder because the result of publishing an m-file usually
consists of several files. In addition to the HTML file itself, the figures are
stored as separate PNG files. If you submit the results electronically, send
the whole folder or else all of the files in it. Each of these files will be labeled
with the name of the m-file. This is why IT IS IMPORTANT THAT THE
NAME OF YOUR M-FILE SHOULD INCLUDE YOUR NAME.

As a simple test run for this use of Preferences, I recommend that you
publish to the flashdrive an m-file titled simply Owner ID of the following
type and publish it directly to the drive, no new folder required.

% OwnerID

% Harry Potter

% If this drive is found please email me at

hpotter@hogwarts.edu

The error message that you see results because the form of the instruction
is not the correct one for an anonymous function, but, as you see, this little
HTML file will appear on your drive and may help if the stick gets lost.

Finally, once the HTML file is finished and you see it before you, it
sometimes happens that the Matlab program remains at Busy, seen on the
bottom left. Usually, just hitting Enter will finish things up. Otherwise,
try Ctl C.

59

MatLab Review Sheet

By the end of the course you should be able to use Matlab in the following
ways:

1. Define arrays (vectors) using : and linspace, as well as define more
general rectangular arrays (matrices). Suppress output using ;. Use
the length and size commands.

2. Describe and use vectorized arithmetic operations for arrays, for exam-
ple, .* and .^ and the transpose operation ′ for matrices.

3. Use the built in functions for sqrt, sine, log, exponential etc. and also
cross for cross product of 3D vectors.

4. Use the diff, max, min, sum and prod commands, understanding how
they work on general rectangular arrays. For max, for example, use the
[Max,location] = max(...) command.

5. Call for an entry for a matrix A in two ways, that is, A(row,col) or
A(number). This requires understanding that the matrix is implicitly
numbered as though it is the vector: a = A(1 :prod(size!(A))), an
explicit renaming which is sometimes useful.

6. Exploit the arrow up feature to reduce the amount of retyping needed.

7. Use plot and plot3 to plot curves in 2D and 3D, respectively.

8. Set the axis range for each variable.

9. Define a string (also called a character array) using single quotes.

10. Use the Edit menu on a figure to label graphs.

11. Use hold on, hold off and clear figure. Use the figure editor
menus to adjust colors and line-styles.

12. Use the help command.

13. Define and use m-files (also called scripts). Use the pause and disp

commands.

60

14. Define and use function m-files.

15. Define anonymous functions. Be able to substitute arrays (so make
sure you vectorize your formulas).

16. Use fzero to find roots.

17. Use syms to declare symbolic variables, and define symbolic functions.

18. Use the subs command with symbolic expressions. In particular, use
it to convert a symbolic expression to an anonymous function.

19. Use diff and int to perform symbolic calculus. Obtain the derivative
and integral as anonymous functions.

20. Use meshgrid to define arrays pairs for graphing surfaces.

21. Use surf command to graph surfaces. Use shading interp to elim-
inate lines. Deal with variations such as cylindrical figures and such
as portions of spheres and ellipsoids which are parameterized using
spherical coordinates. Adjust the figure using axis equal.

22. Use contour and labeling commands, both contour and contour3 and
clabel with each one. Adjust the number of contour lines which are
shown in each case. Also use surfc.

23. Use quiver and quiver3.

24. Use numerical integration commands quad for single variable integra-
tion and quadv for iterated integrals.

25. Use logical operators like <=, <, >=, >, == .

61

Sample Lab Exam Questions

Part I These are typical short answer questions

1. How would you use the linspace command to generate the sequence
[0: .01 : 1]?

2. How would you define a to be a vector whose entries are the numbers
of the interval [0, 2π] which subdivide the interval into 20 intervals of
equal length? What is the size of a?

3. How would you define a to be a vector whose entries are the numbers
of the interval [0, 25] which subdivide the interval into 200 intervals of
equal length, making sure that the resulting vector is not printed out
on the screen?

4. How would you define a to be a vector whose entries are the 20 points
of the interval [0, 2π] which are equally spaced and which include the
endpoints? What is the size of a?

5. How would you define A to be the matrix

3 4 7 9
2 3 2 1
0 1 0 1

?

What is the size of A ?

6. What command allows the user to superimpose several graphs in the
same window?

7. What command will write the text “(2,1)” at the point with coordinates
(2,1) in a 2D graphics window?

8. What command is used to reserve x and y as symbolic variables?

9. Write the command or commands which you use to define the vector y
whose entries are the values of the function f(x) = x3

√
sin2(x) + 1 at

the first ten positive integers?

10. Write the commands which we use to plot the graph of the function
f(x) = x cos(x2) on the interval [0, 5].

62

11. Determine to at least two place decimal accuracy at what value of x
the function f(x) = x sin(

√
x) has its maximum value on the interval

[0, 2π]?

12. Write the command used to find the value of x close to x = .5 where
the function f(x) = 3 sin(x) − x − 1 is zero. What is the computed
value?

13. Write the commands which we use to plot the graph of the function
f(x, y) = x2y over the square [−1, 1]× [−1, 1].

14. Write the commands which we use to plot the graph of the curve pa-
rameterized by t: x = t, y = t2, z = sin(t) for the interval of time
0 ≤ t ≤ π.

15. Write the commands which we use to compute the indefinite integral∫
x sin(

√
x)dx symbolically. What is the computed formula?

16. Find Matlab’s numerical estimate for the value of
∫ 1

0
sin x√
1+x2 dx.

17. Find Matlab’s numerical estimate for the value of
∫ 1

0

∫ x

0

√
y + x4 dy dx.

Part II. Typical longer questions

1. Suppose f is defined as an anonymous function by the command

f = @(x,y) 2*x.*y - 3*x.^2 - 4*y.^2 + 14*x + 10*y + 12

(a) State a sequence of commands that will produce 25 labeled contour
curves of the function over the square [0, 5]× [0, 5].

(b) Based on the contour plot determine whether the function has any
critical points in the square [0, 5] × [0, 5] and for each one deter-
mine whether it is a relative maximum, relative minimum or a
saddle point. Provide a justification for your answer.

63

2. A student wishes to create a plot for the space curve given by x =
cos(t), y = sin(t), z = t for t in the interval [0, 2π]. The curve should
be drawn in black. The student produces the following code:

t= [0 : 2pi/10 : 2pi];

x = cos(t); y = sin(t); z = t;

plot(x, y, z, ’b’)

(a) What, if anything, is wrong with either the commands or the
output?

(b) State the corrected code for accomplishing the desired result.

3. Give a command or commands that will draw the three sides of the
triangle with vertices A = (1, 1,), B = (3, 2) and C = (2, 2).

64

Index

anonymous functions Labs 01, 02
anonymous function from a symbolic formula Lab 03
anonymous functions of several variables Lab 04
arithmetic of arrays Lab 01
arrays, numerical Lab 01
arrays, symbolic Lab 03
axis equal Lab 04

built-in functions Lab 01

char Lab 03
character arrays (strings) Lab 02
clabel Lab 04
colon operator (:) Lab 01
comet Lab 02
contour Lab 04
contour3 Lab 04
cross Lab 04
cumprod Lab 10
cumsum Lab 10

diff Labs 01, 03
diff(,x), diff(,y) Lab 06
differentiation Lab 03
disp Lab 02
double Lab 03
dblquad Lab 09

echo on, echo off Lab 02
Edit menus, colors and line styles Lab 01
eps Lab 04
eval Lab 03

65

figure Lab 01
figure(gcf) Lab 03
for . . . end Labs 07, 10
function handles Lab 02
fzero Lab 02

grid on Lab 02

help Lab 01
hold on, hold off, hold Lab 01

input Labs 03, 05, 06
int Lab 03
integration Lab 03

linspace Lab 01
length Lab 01
logic operators <, <=, >, >=, ==, ~= Lab 02

m-files (function m-files and scripts) Lab 02
max, min Labs 01, 02, 07
mesh Lab 04
meshgrid Lab 04

num2str Lab 02
number arrays Lab 01
numerical integration Lab 03

Oddities Labs 06, 08, 09
ones Labs 07, 08
operations on arrays Lab 01

66

partial derivatives Lab 06
pause Lab 02
pause(n) Lab 07
pi Lab 01
plot Lab 01
plot3 Lab 04
polar Lab 01
polyval Lab 10
prod Lab 01

quad Lab 03
quadv Lab 09
quiver, quiver3 Lab 07

rotating for surface plots Lab 04

semicolon (;) Lab 01
shading interp Lab 04
size Labs 01, 07
sort Lab 02
subs Labs 03, 09, 10
sum Lab 01
surf Lab 04
surfc Labs 06, 07
symbolic arrays Lab 03
symbolic differentiation Lab 03
symbolic expressions in several variables Lab 06
symbolic integration Lab 03
symbolic partial derivatives Lab 06
syms Lab 03
sym Lab 03

text Lab 02
title Lab 02
transpose(’) Lab 01

67

unique Lab 02

vectors and matrices Lab 01

warning off, warning on Lab 09
while ... end Lab 03
whos Lab 03

xlabel Lab 02

ylabel Lab 02

zeros Labs 07, 08
zooming in/out for surface plots Lab 04

